Focusing on the vehicle's most important subsystems, this book features an introduction by the editor and 40 SAE technical papers from 2001-2006. The papers are organized in the following sections, which parallel the steps to be followed while building a complete final system: Introduction to Safety-Critical Automotive Systems Safety Process and Standards Requirements, Specifications, and Analysis Architectural and Design Methods and Techniques Prototyping and Target Implementation Testing, Verifications, and Validation Methods
In the aerospace industry, competition is high and the need to ensure safety and security while managing costs is paramount. Furthermore, stakeholders—who gain the most by working together—do not necessarily trust each other. Now, mix that with changing enterprise technologies, management of historical records, and customized legacy systems. This issue touches all aspects of the aerospace industry, from frequent flyer miles to aircraft maintenance and drives tremendous inefficiency and cost. Technology that augments, rather than replaces, is needed to transform these complex systems into efficient, digital processes. Blockchain technology offers collaborative opportunities for solving some of the data problems that have long challenged the industry. This SAE EDGE™ Research Report by Rhonda D. Walthall examines how blockchain technology could impact the aerospace industry and addresses some of the unsettled concerns surrounding its implementation. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2020021
Racing continues to be the singular, preeminent source of powertrain development for automakers worldwide. Engineering teams rely on motorsports for the latest prototype testing and research. Endurance racing provides the harshest and most illuminating stage for system design validation of any motorsport competition. While advancements throughout the 20th Century brought about dramatic increases in engine power output, the latest developments from endurance racing may be more impactful for fuel efficiency improvements. Hybrid powertrains are a critical area of research for automakers and are being tested on the toughest of scales. Prototype Powertrain in Motorsport Endurance Racing brings together ten vital SAE technical papers and SAE Automotive Engineering magazine articles surrounding the advancements of hybrid powertrains in motorsports. The book also includes a history of endurance racing from the World Sports Car Championship through the 24 Hours of Le Mans to the World Endurance Championship written by the author. The goal is to provide the latest concepts being researched and tested on hybrid systems that will influence vehicles for years to come - appealing to engineers and enthusiasts alike.
The first two editions of this title, published by SAE International in 1990 and 1995, have been best-selling definitive references for those needing technical information about automotive fuels. This long-awaited new edition has been thoroughly revised and updated, yet retains the original fundamental fuels information that readers find so useful. This book is written for those with an interest in or a need to understand automotive fuels. Because automotive fuels can no longer be developed in isolation from the engines that will convert the fuel into the power necessary to drive our automobiles, knowledge of automotive fuels will also be essential to those working with automotive engines. Small quantities of fuel additives increasingly play an important role in bridging the gap that often exists between fuel that can easily be produced and fuel that is needed by the ever-more sophisticated automotive engine. This book pulls together in a single, extensively referenced volume, the three different but related topics of automotive fuels, fuel additives, and engines, and shows how all three areas work together. It includes a brief history of automotive fuels development, followed by chapters on automotive fuels manufacture from crude oil and other fossil sources. One chapter is dedicated to the manufacture of automotive fuels and fuel blending components from renewable sources. The safe handling, transport, and storage of fuels, from all sources, are covered. New combustion systems to achieve reduced emissions and increased efficiency are discussed, and the way in which the fuels’ physical and chemical characteristics affect these combustion processes and the emissions produced are included. There is also discussion on engine fuel system development and how these different systems affect the corresponding fuel requirements. Because the book is for a global market, fuel system technologies that only exist in the legacy fleet in some markets are included. The way in which fuel requirements are developed and specified is discussed. This covers test methods from simple laboratory bench tests, through engine testing, and long-term test procedures.
As unmanned aerial vehicles (UAVs) fill a wider and wider variety of civic, scientific, and military roles—analysts predict that the UAV market will be the most dynamic growth sector of the decade in terms of the world aerospace industry. As a result, UAV research and development will contribute to a major portion of spending in the next decades—with a significant emphasis on propulsion technologies. This book will cover several UAV propulsion technologies, ranging from modification of conservative designs to assessing the potential of unconventional arrangements. Each chapter provides a glimpse of how researchers are leveraging different fuel types, powerplants, and system architectures in the pursuit of powerful, efficient, and robust UAV propulsion. By developing higher-performing propulsion systems—whether through the refinement of existing technologies like two-stroke heavy-fuel engines and hybrid-electric arrangements or the investigation of new concepts such as dielectric barrier discharge—engineers will be able to increase UAV capabilities for the world’s developing aviation needs.
This Proceedings volume gathers outstanding papers submitted to the 19th Asia Pacific Automotive Engineering Conference & 2017 SAE-China Congress, the majority of which are from China – the largest car-maker as well as most dynamic car market in the world. The book covers a wide range of automotive topics, presenting the latest technical advances and approaches to help technicians solve the practical problems that most affect their daily work.
This compendium presents the most complete design and engineering story available anywhere about this groundbreaking new vehicle. It also introduces you to the engineering team and how they made the world’s first production extended-range electric vehicle a reality. Combining articles from SAE International’s Vehicle Electrification and Automotive Engineering International magazines, new SAE technical papers, and all-new content, this full-color book is the only one of its kind that lifts the veil on how the GM team and key supplier partners met the difficult engineering challenges faced in developing the Volt. Topics include the Volt’s systems, components, and model-based design; a behind-the-wheel look at a Volt prototype; and how the Volt’s engineering team used OnStar to collect test drive data from preproduction Volt vehicles. There is also an interview with GM’s Micky Bly in which the executive explains how the Volt program enabled GM to take new approaches to vehicle electrical architectures.
In Racing Toward Zero, the authors explore the issues inherent in developing sustainable transportation. They review the types of propulsion systems and vehicle options, discuss low-carbon fuels and alternative energy sources, and examine the role of regulation in curbing emissions. All technologies have an impact on the environment, from internal combustion engine vehicles to battery electric vehicles, fuel cell electric vehicles, and hybrids-there is no silver bullet. The battery electric vehicle may seem the obvious path to a sustainable, carbon-free transportation future, but it's not the only, nor necessarily the best, path forward. The vast majority of vehicles today use the internal combustion engine (ICE), and this is unlikely to change anytime soon. Improving the ICE and its fuels-entering a new ICE age-must be a main route on the road to zero emissions. How do we go green? The future requires a balanced approach to transportation. It's not a matter of choosing between combustion or electrification; it's combustion and electrification. As the authors say, "The future is eclectic." By harnessing the best qualities of both technologies, we will be in the best position to address our transportation future as quickly as possible. (ISBN:9781468601466 ISBN:9781468601473 ISBN:9781468602005 DOI:10.4271/9781468601473)
This book provides a clear, concise, complete and authoritative introduction to System Architecture Evolution (SAE) standardization work and its main outcome: the Evolved Packet Core (EPC), including potential services and operational scenarios. After providing an insightful overview of SAE's historical development, the book gives detailed explanations of the EPC architecture and key concepts as an introduction. In-depth technical descriptions of EPC follow, including thorough functional accounts of the different components of EPC, protocols, network entities and procedures. Case studies of deployment scenarios show how the functions described within EPC are placed within a live network context, while a description of the services that are predicted to be used shows what EPC as a core network can enable. This book is an essential resource for professionals and students who need to understand the latest developments in SAE and EPC, the 'engine' that connects broadband access to the internet. All of the authors have from their positions with Ericsson been actively involved in GPRS, SAE and 3GPP from a business and technical perspective for many years. Several of the authors have also been actively driving the standardization efforts within 3GPP. "There is no doubt that this book, which appears just when the mobile industry starts its transition away from legacy GSM/GPRS and UMTS networks into the future will become the reference work on SAE/LTE. There are no better qualified persons than the authors of this book to provide both communication professionals and an interested general public with insights into the inner workings of SAE/LTE. Not only are they associated with one of the largest mobile network equipment vendors in the world, they have all actively contributed to and, in some cases, been the driving forces behind the development of SAE/LTE within 3GPP." - from the foreword by Dr. Ulf Nilsson, TeliaSonera R&D, Mobility Core and Connectivity "The authors have done an excellent job in writing this book. Their familiarity with the requirements, concepts and solution alternatives, as well as the standardization work allows them to present the material in a way that provides easy communication between Architecture and Standards groups and Planning/ Operational groups within service provider organizations." - from the foreword by Dr. Kalyani Bogineni, Principal Architect, Verizon - Up-to-date coverage of SAE including the latest standards development - Easily accessible overview of the architecture and concepts defined by SAE - Thorough description of the Evolved Packet Core for LTE, fixed and other wireless accesses - Comprehensive explanation of SAE key concepts, security and Quality-of-Service - Covers potential service and operator scenarios including interworking with existing 3GPP and 3GPP2 systems - Detailed walkthrough of network entities, protocols and procedures - Written by established experts in the SAE standardization process, all of whom have extensive experience and understanding of its goals, history and vision