T. Büch, E. Schäfer, D. Steinritz, A. Dietrich, T. Gudermann: Chemosensory TRP Channels in the Respiratory Tract: Role in Toxic Lung Injury and Potential as "Sweet Spots" for Targeted Therapies. D.C. Zebrowski and F. B. Engel: The Cardiomyocyte Cell Cycle in Hypertrophy, Tissue Homeostasis, and Regeneration. P. Hegyi and O.H. Petersen: The Exocrine Pancreas: The Acinar -Ductal Tango in Physiology and Pathophysiology.
Leading researchers are specially invited to provide a complete understanding of a key topic within the multidisciplinary fields of physiology, biochemistry and pharmacology. In a form immediately useful to scientists, this periodical aims to filter, highlight and review the latest developments in these rapidly advancing fields.
In this volume of Reviews there are three outstanding articles, one on phspholipase D, an enzyme that is widely distributed in bacteria, protozoa, fungi, plants and animals. Phospholipase D carries out a transphosphatidylation reaction, which is unique to this enzyme. This review is focussed on mammalian PLDs. The second review deals with endotoxin tolerance, the term which describes the phenomenon that immune responses and metabolic changes are mitigated after repeated LPS administration. The third article summarizes the current knowledge relevant to understanding the molecular basis of GPCR function and focusses on the underlying mechanisms of GPCR malfunctions responsible for diferent human diseases.
Leading researchers are specially invited to provide a complete understanding of the key topics in these archetypal multidisciplinary fields. In a form immediately useful to scientists, this periodical aims to filter, highlight and review the latest developments in these rapidly advancing fields.
This book puts hydrogen sulfide in context with other gaseous mediators such as nitric oxide and carbon monoxide, reviews the available mechanisms for its biosynthesis and describes its physiological and pathophysiological roles in a wide variety of disease states. Hydrogen sulfide has recently been discovered to be a naturally occurring gaseous mediator in the body. Over a relatively short period of time this evanescent gas has been revealed to play key roles in a range of physiological processes including control of blood vessel caliber and hence blood pressure and in the regulation of nerve function both in the brain and the periphery. Disorders concerning the biosynthesis or activity of hydrogen sulfide may also predispose the body to disease states such as inflammation, cardiovascular and neurological disorders. Interest in this novel gas has been high in recent years and many research groups worldwide have described its individual biological effects. Moreover, medicinal chemists are beginning to synthesize novel organic molecules that release this gas at defined rates with a view to exploiting these new compounds for therapeutic benefit.
Physiological Systems in Insects, Fourth Edition explores why insects have become the dominant animals on the planet. Sections describe the historical investigations that have led us to our current understanding of insect systems. Integrated within a basic physiological framework are modern molecular approaches that provide a glimpse of the genetic and evolutionary frameworks that testify to the unity of life on earth. This updated edition describes advances that have occurred in our understanding of hormone action, metamorphosis, and reproduction, along with new sections on the role of microbiomes, insecticide action and its metabolism, and a chapter on genetics, genomics and epigenetic systems. The book represents a collaborative effort by two internationally known insect physiologists who have instructed graduate courses in insect physiology. As such, it is the ideal resource for entomologists and those in other fields who may require knowledge of insect systems. - Presents updated information on key physiological principles - Covers detailed and instructive figures for visual enhancement - Provides flowing text without the interruption of citations - Includes evolutionary considerations throughout, also providing a discussion on the implications of molecular techniques and discoveries - Encourages further reading with a complete bibliography at end of each chapter
This first volume provides a comprehensive overview on evolutionary, environmental and systematic aspects of antifreeze proteins. It shortly explains the physical properties of ice and further intelligibly describes the biology of the antifreeze proteins in different organisms, and offers a detailed insight into their history of evolution. In addition the book discusses the status of the current knowledge and ongoing research and highlights also those parts, where further investigation needs to be done. Together with the second volume on the biochemistry and molecular biology of antifreeze proteins, this book represents a unique, comprehensive work and a must-have for students and scientists in biochemistry, evolution, physiology and physical chemistry.
Insects as a group occupy a middle ground in the biosphere between bacteria and viruses at one extreme, amphibians and mammals at the other. The size and general nature of insects present special problems to the study of entomology. For example, many commercially available instruments are geared to measure in grams, while the forces commonly encountered in studying insects are in the milligram range. Therefore, techniques developed in the study of insects or in those fields concerned with the control of insect pests are often unique. Methods for measuring things are common to all sciences. Advances sometimes depend more on how something was done than on what was measured; indeed a given field often progresses from one technique to another as new methods are discovered, developed, and modified. Just as often, some of these techniques find their way into the classroom when the problems involved have been sufficiently ironed out to permit students to master the manipulations in a few laboratory periods. Many specialized techniques are confined to one specific research laboratory. Although methods may be considered commonplace where they are used, in another context even the simplest procedures may save considerable time. It is the purpose of this series (1) to report new developments in methodology, (2) to reveal sources of groups who have dealt with and solved particular entomological problems, and (3) to describe experiments which may be applicable for use in biology laboratory courses.