Enantioselective C-C Bond Forming Reactions

Enantioselective C-C Bond Forming Reactions

Author:

Publisher: Elsevier

Published: 2023-12-01

Total Pages: 338

ISBN-13: 044323700X

DOWNLOAD EBOOK

Enantioselective C-C Bond Forming Reactions: From Metal Complex-, Organo-, and Bio-catalyzed Perspectives, Volume 73 in the Advances in Catalysis series, highlights new advances in the field, with this new volume presenting interesting chapters on topics such as An introduction to Chirality, Metal-catalyzed stereoselective C-C-bond forming reactions, Enantioselective C-C bond forming reactions promoted by organocatalysts based on unnatural amino acid derivatives, Enantioselective C-C bond formation in complex multicatalytic system, Gold-based multicatalytic systems for enantioselective C-C Bond forming reactions, Novel enzymatic tools for C-C bond formation through the development of new-to-nature biocatalysis, and more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in Advances in Catalysis serials Updated release includes the latest information in the field


Benzene Derivatives—Advances in Research and Application: 2012 Edition

Benzene Derivatives—Advances in Research and Application: 2012 Edition

Author:

Publisher: ScholarlyEditions

Published: 2012-12-26

Total Pages: 246

ISBN-13: 1464996393

DOWNLOAD EBOOK

Benzene Derivatives—Advances in Research and Application: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Benzene Derivatives. The editors have built Benzene Derivatives—Advances in Research and Application: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Benzene Derivatives in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Benzene Derivatives—Advances in Research and Application: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.


Chemical Catalysts for Biomass Upgrading

Chemical Catalysts for Biomass Upgrading

Author: Mark Crocker

Publisher: John Wiley & Sons

Published: 2020-03-09

Total Pages: 634

ISBN-13: 3527344667

DOWNLOAD EBOOK

A comprehensive reference to the use of innovative catalysts and processes to turn biomass into value-added chemicals Chemical Catalysts for Biomass Upgrading offers detailed descriptions of catalysts and catalytic processes employed in the synthesis of chemicals and fuels from the most abundant and important biomass types. The contributors?noted experts on the topic?focus on the application of catalysts to the pyrolysis of whole biomass and to the upgrading of bio-oils. The authors discuss catalytic approaches to the processing of biomass-derived oxygenates, as exemplified by sugars, via reactions such as reforming, hydrogenation, oxidation, and condensation reactions. Additionally, the book provides an overview of catalysts for lignin valorization via oxidative and reductive methods and considers the conversion of fats and oils to fuels and terminal olefins by means of esterification/transesterification, hydrodeoxygenation, and decarboxylation/decarbonylation processes. The authors also provide an overview of conversion processes based on terpenes and chitin, two emerging feedstocks with a rich chemistry, and summarize some of the emerging trends in the field. This important book: -Provides a comprehensive review of innovative catalysts, catalytic processes, and catalyst design -Offers a guide to one of the most promising ways to find useful alternatives for fossil fuel resources -Includes information on the most abundant and important types of biomass feedstocks -Examines fields such as catalytic cracking, pyrolysis, depolymerization, and many more Written for catalytic chemists, process engineers, environmental chemists, bioengineers, organic chemists, and polymer chemists, Chemical Catalysts for Biomass Upgrading presents deep insights on the most important aspects of biomass upgrading and their various types.


Catalytic Generation and C-C Bond Forming Reactions of Dicoordinated Carbocations

Catalytic Generation and C-C Bond Forming Reactions of Dicoordinated Carbocations

Author: Stanislav Popov

Publisher:

Published: 2021

Total Pages: 511

ISBN-13:

DOWNLOAD EBOOK

This dissertation describes the development of Lewis acid-based methodology togenerate dicoordinated carbocations catalytically. These reactive intermediates were once sparingly accessible synthetically and were mostly the focus of theoretical studies. This dissertation highlights new, mild conditions that can generate these species in a kinetically persistent fashion through the use of weakly coordinating anions in non-polar media. These conditions also enable new carbon-carbon bond forming reactions of these intermediates to take place; either through Friedel-Crafts or C-H insertion. Additionally mechanistic nuances and the key advantages and disadvantages of each developed system will be highlighted. Overall, this work features the development of this chemistry from a fundamental study to a more broadly applicable reaction. Chapter One is a brief overview of the current state of research on aryl and vinyl cations. This chapter serves as a prelude to the remaining chapters and will be referenced throughout this dissertation. Strategies to generate these reactive species, specifically ones that inspired our own research in this area are presented. Furthermore, some reactivity of these cations is also highlighted, again focusing on mechanistically similar reactions to our own. Chapter Two describes our efforts in the development of a silylium-carborane catalyzed reaction to generate aryl and vinyl cations catalytically from aryl fluorides and vinyl triflates respectively. These species were then able to be engaged in intermolecular reactions with inert C-H bonds of both alkanes and arenes resulting in a mild C-H functionalization reaction. Chapter Three discusses our investigations of lithium-based Lewis acids to generate reaction vinyl cations under highly basic conditions and their ensuing reactivity. Notably, this work also overcomes some of the challenges presented in chapter Two with regards to the functional group compatibility of these systems. This work represents an important advancement of our chemistry towards a more robust, practical reaction. Chapter Four highlights an ongoing effort in our research group to utilize different vinyl sulfonate precursors in order to access a broader class of vinyl cation intermediates. With these precursors in hand, we utilize similar conditions to Chapter Three to develop some new vinyl cation reactivity. These reactions involve trapping of vinyl cations with allylsilanes, silyl ketene acetals, and methyl ethers. Chapter Five discusses our ongoing effort to develop a "field guide" for the practicing organic chemist in order to disseminate some of our groups in-house knowledge in developing these cation methodologies over the past few years. Here, mechanistic nuances, substrate design, and choice of catalytic system are discussed.


Supported Metal Single Atom Catalysis

Supported Metal Single Atom Catalysis

Author: Philippe Serp

Publisher: Wiley-VCH

Published: 2022-02-22

Total Pages: 688

ISBN-13: 9783527348442

DOWNLOAD EBOOK

b”Supported Metal Single Atom CatalysisCovers all key aspects of supported metal single atom catalysts, an invaluable resource for academic researchers and industry professionals alike Single atom catalysis is one of the most innovative and dynamic research areas in catalysis science. Supported metal catalysts are used extensively across the chemical industry, ranging from fine and bulk chemical production to petrochemicals. Single atom catalysts (SACs) combine the advantages of both homogeneous and heterogeneous catalysts such as catalyst stability, activity, and high dispersion of the active phase. Supported Metal Single Atom Catalysis provides an authoritative and up-to-date overview of the emerging field, covering the synthesis, preparation, characterization, modeling, and applications of SACs. This comprehensive volume introduces the basic principles of single atom catalysis, describes metal oxide and carbon support materials for SAC preparation, presents characterization techniques and theoretical calculations, and discusses SACs in areas including selective hydrogenation, oxidation reactions, activation of small molecules, C-C bond formation, and biomedical applications. Highlights the activity, selectivity, and stability advantages of supported metal SACs compared to other heterogeneous catalysts Covers applications of SACs in thermal catalysis, electrocatalysis, and photocatalysis Includes chapters on single atom alloys and supported double and triple metal atom catalysts Discusses the prospects, challenges, and potential industrial applications of SACs Supported Metal Single Atom Catalysis is an indispensable reference for all those working in the fields of catalysis, solid-state chemistry, materials science, and spectroscopy, including catalytic chemists, organic chemists, electrochemists, theoretical chemists, and industrial chemists.


Metal Catalysed Carbon-Carbon Bond-Forming Reactions

Metal Catalysed Carbon-Carbon Bond-Forming Reactions

Author: Stanley M. Roberts

Publisher: John Wiley & Sons

Published: 2005-01-28

Total Pages: 268

ISBN-13: 0470862009

DOWNLOAD EBOOK

The chemist has a vast range of high-tech catalysts to use when working in fine chemical synthesis but the catalysts are generally hard to use and require both time, skill and experience to handle properly. The Catalysts for Fine Chemical Synthesis series contains tested and validated procedures which provide a unique range resources for chemists who work in organic chemistry. "... of great value to synthetic organic chemists..." (The Chemists, Summer 2003) Volume 3 in the series focuses on catalysts for carbon-carbon bond formation and presents practical and detailed protocols on how to use sophisticated catalysts by the "inventors" and "developers" who created them. The combination of protocols and review commentaries helps the reader to easily and quickly understand and use the new high-tech catalysts.


Bifunctional Molecular Catalysis

Bifunctional Molecular Catalysis

Author: Takao Ikariya

Publisher: Springer Science & Business Media

Published: 2011-06-26

Total Pages: 219

ISBN-13: 3642207308

DOWNLOAD EBOOK

Masakatsu Shibasaki, Motomu Kanai, Shigeki Matsunaga, and Naoya Kumagai: Multimetallic Multifunctional Catalysts for Asymmetric Reactions.- Takao Ikariya: Bifunctional transition metal-based molecular catalysts for asymmetric syntheses.- Chidambaram Gunanathan and David Milstein: Bond Activation by Metal-Ligand Cooperation: Design of ”Green” Catalytic Reactions Based on Aromatization-Dearomatization of Pincer Complexes.- Madeleine C. Warner, Charles P. Casey, and Jan-E. Bäckvall: Shvo’s Catalyst in Hydrogen Transfer Reactions.- Noritaka Mizuno, Keigo Kamata, and Kazuya Yamaguchi: Liquid-Phase Selective Oxidation by Multimetallic Active Sites of Polyoxometalate-Based Molecular Catalysts.- Pingfan Li and Hisashi Yamamoto: Bifunctional Acid Catalysts for Organic Synthesis.- Jun-ichi Ito, Hisao Nishiyama: Bifunctional Phebox Complexes for Asymmetric Catalysis.


Mechanistic Studies on Metal-catalyzed Carbon-nitrogen Bond Forming Reactions

Mechanistic Studies on Metal-catalyzed Carbon-nitrogen Bond Forming Reactions

Author: Eric R. Strieter

Publisher:

Published: 2005

Total Pages: 330

ISBN-13:

DOWNLOAD EBOOK

(Cont.) A systematic mechanistic analysis of Pd(OAc)2/ monophosphino- biaryl-catalyzed C-N bond forming reactions with aryl chlorides has been performed. The results provide insights into the relationship between the steady-state concentration of active Pd and the size and substitution pattern of the monophosphinobiaryl ligands. These insights into the nature of catalyst activation help highlight the importance of establishing a high concentration of active catalyst. The catalyst derived from the bulkiest ligand in the series, the tri-i-propyl ligand 13, exhibits both accelerated rate and the increased stability required for practical application of this reaction.