Enzymes have interesting applications in our biological system and act as valuable biocatalysts. Their various functions allow enzymes to develop new drugs, detoxifications, and pharmaceutical chemistry. Research Advancements in Pharmaceutical, Nutritional, and Industrial Enzymology provides emerging research on biosynthesis, enzymatic treatments, and bioengineering of medicinal waste. While highlighting issues such as structural implications for drug development and food applications, this publication explores information on various applications of enzymes in pharmaceutical, nutritional, and industrial aspects. This book is a valuable resource for medical professionals, pharmacists, pharmaceutical companies, researchers, academics, and upper-level students seeking current information on developing scientific ideas for new drugs and other enzymatic advancements.
Industrial Enzymology provides state-of-the-art explanations of the uses of enzymes, with an emphasis on their practical applications in 22 industries.
The integration of enzymes in food processing is well known, and dedicated research is continually being pursued to address the global food crisis. This book provides a broad, up-to-date overview of the enzymes used in food technology. It discusses microbial, plant and animal enzymes in the context of their applications in the food sector; process of immobilization; thermal and operational stability; increased product specificity and specific activity; enzyme engineering; implementation of high-throughput techniques; screening of relatively unexplored environments; and development of more efficient enzymes. Offering a comprehensive reference resource on the most progressive field of food technology, this book is of interest to professionals, scientists and academics in the food and biotech industries.
The tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.
In this technology-driven era, conventional manufacturing is increasingly at risk of reaching its limit, and a more design-driven manufacturing process, additive manufacturing, might just hold the key to innovation. Offering a higher degree of design freedom, the optimization and integration of functional features, and the manufacturing of small batch sizes, additive manufacturing is changing industry as we know it. Additive Manufacturing Technologies From an Optimization Perspective is a critical reference source that provides a unified platform for the dissemination of basic and applied knowledge about additive manufacturing. It carefully examines how additive manufacturing is increasingly being used in series production, giving those in the most varied sectors of industry the opportunity to create a distinctive profile for themselves based on new customer benefits, cost-saving potential, and the ability to meet sustainability goals. Highlighting topics such as bio-printing, tensile strength, and cell printing, this book is ideally designed for academicians, students, engineers, scientists, software developers, architects, entrepreneurs, and medical professionals interested in advancements in next-generation manufacturing.
The world is confronting the reality of climate change, which transcends geographical boundaries, necessitating a multidisciplinary approach. Effective mitigation strategies for climate change demand diversity, inclusion, equity, and collaboration as paramount considerations in the formulation and execution of mitigation strategies. Global Perspectives on Climate Change, Social Resilience, and Social Inclusion illuminates the interplay between climate shifts and society's complex tapestry. Authored by leading sociologists and interdisciplinary scholars, this researched volume offers an exploration of climate change through the lens of sociology, unveiling its implications for our global community. Moreover, the book spotlights the proactive voices of voluntary associations and activists dedicated to championing climate change victims' rights. Their collective message resonates throughout: mitigating climate change risks must be integrated into a broader framework of resilient development, elevating the economic standing and quality of life for disadvantaged groups while fostering equity across all strata of society. This book is ideal for scholars, policymakers, and activists seeking a nuanced understanding of the intricate interplay between climate change and the social fabric of our world.
The chasm between the physical capabilities of Intelligent Robotics and Autonomous Systems (IRAS) and their cognitive potential presents a formidable challenge. While these machines exhibit astonishing strength, precision, and speed, their intelligence and adaptability lag far behind. This inherent limitation obstructs the realization of autonomous systems that could reshape industries, from self-driving vehicles to industrial automation. The solution to this dilemma is unveiled within the pages of Modeling, Simulation, and Control of AI Robotics and Autonomous Systems. Find within the pages of this book answers for the cognitive deficit within IRAS. While these systems boast remarkable physical capabilities, their potential for intelligent decision-making and adaptation remains stunted, thereby bringing innovation to a halt. Solving this issue would mean the re-acceleration of multiple industries that could utilize automation to prevent humans from needing to do work that is dangerous, and could revolutionize transportation, and more.
Effective waste management is more crucial than ever in dealing with environmental challenges. The Sustainable Development Goals (SDGs) provide a framework for addressing these challenges, but their complex interplay with waste management practices requires deeper examination. Exploring Waste Management in Sustainable Development Contexts offers a comprehensive exploration of this intersection, highlighting the urgent need for innovative solutions to transform waste management into a driver of sustainable development. The book delves into the various challenges of waste management, from the types and volume of waste generated to its environmental and health impacts. It sheds light on the inadequacies of current methods and presents sustainable practices that can pave the way for a greener future. By focusing on sustainable approaches to waste management, the book is an inspiration for actionable change and fosters a deeper understanding of waste management's role in achieving the SDGs.
Quantum computing is radically different from the conventional approach of transforming bit-strings from one set of zeros and ones to another. With quantum computing, everything changes. The physics used to understand bits of information and the devices that manipulate them are vastly different. Quantum engineering is a revolutionary approach to quantum technology. Technology Road Mapping for Quantum Computing and Engineering explores all the aspects of quantum computing concepts, engineering, technologies, operations, and applications from the basics to future advancements. Covering topics such as machine learning, quantum software technology, and technology road mapping, this book is an excellent resource for data scientists, engineers, students and professors of higher education, computer scientists, researchers, and academicians.
The field of DC attraction-type levitation systems (DCALS) faces challenges that hinder its optimal performance in various industrial applications, stemming from inherent instability, nonlinearity, and unmodeled dynamics. To address these issues, Studies on Single and Double Actuator Based DC Attraction Type Levitation Systems: Optimization Techniques by Dr. Rupam Bhaduri provides a comprehensive solution. This book offers an in-depth analysis, design, and optimization of DCALS, with a focus on single and double actuator systems. Through advanced optimization techniques and interdisciplinary approaches, Dr. Bhaduri equips academic scholars, researchers, and engineering professionals with the necessary knowledge and tools to overcome system complexities, achieve stability, and ensure precise control in levitation systems. By leveraging the insights presented in this invaluable resource, scholars can contribute to the advancement of DCALS through innovative research and development. The book caters to individuals specializing in electromagnetism, electronics, power electronics, mechanical engineering, and control systems, who seek a deeper understanding of DC attraction-type levitation systems. With its interdisciplinary approaches and emphasis on optimization techniques, this book unlocks the full potential of DCALS, enabling precise control and stability in industrial applications. Embracing the concepts and methodologies outlined in this book will empower scholars to overcome challenges, drive progress, and make significant contributions to the field of DC attraction-type levitation systems.