Reproductive Genomics in Domestic Animals is a thorough examination of genomics in the livestock industry, encompassing genome sciences, genome biotechnology, and reproduction. Recent developments in molecular genetics and genomics have enabled scientists to identify and characterize genes contributing to the complexity of reproduction in domestic animals, allowing scientists to improve reproductive traits. Providing the livestock industry with essential tools for enhancing reproductive efficiency, Reproductive Genomics in Domestic Animals surveys the current status of reproductive genomes and looks to the future direction of research.
Behavior is shaped by both genetics and experience--nature and nurture. This book synthesizes research from behavioral genetics and animal and veterinary science, bridging the gap between these fields. The objective is to show that principles of behavioral genetics have practical applications to agricultural and companion animals. The continuing domestication of animals is a complex process whose myriad impacts on animal behavior are commonly under-appreciated. Genetic factors play a significant role in both species-specific behaviors and behavioral differences exhibited by individuals in the same species. Leading authorities explore the impact of increased intensities of selection on domestic animal behavior. Rodents, cattle, pigs, sheep, horses, herding and guard dogs, and poultry are all included in these discussions of genetics and behavior, making this book useful to veterinarians, livestock producers, laboratory animal researchers and technicians, animal trainers and breeders, and any researcher interested in animal behavior. - Includes four new chapters on dog and fox behavior, pig behavior, the effects of domestication and horse behavior - Synthesizes research from behavioral genetics, animal science, and veterinary literature - Broaches fields of behavior genetics and behavioral research - Includes practical applications of principles discovered by behavioral genetics researchers - Covers many species ranging from pigs, dogs, foxes, rodents, cattle, horses, and cats
Advances in Animal Genomics provides an outstanding collection of integrated strategies involving traditional and modern - omics (structural, functional, comparative and epigenomics) approaches and genomics-assisted breeding methods which animal biotechnologists can utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in livestock. Written by international experts on animal genomics, this book explores the recent advances in high-throughput, next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches which have enabled to produce huge genomic and transcriptomic resources globally on a genome-wide scale. This book is an important resource for researchers, students, educators and professionals in agriculture, veterinary and biotechnology sciences that enables them to solve problems regarding sustainable development with the help of current innovative biotechnologies. - Integrates basic and advanced concepts of animal biotechnology and presents future developments - Describes current high-throughput next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches for sustainable livestock production - Illustrates integrated strategies to dissect and decode the molecular and gene regulatory networks involved in complex quantitative yield and stress tolerance traits in livestock - Ensures readers will gain a strong grasp of biotechnology for sustainable livestock production with its well-illustrated discussion
Recognizing the important contributions that genomic analysis can make to agriculture, production and companion animal science, evolutionary biology, and human health with respect to the creation of models for genetic disorders, the National Academies convened a group of individuals to plan a public workshop that would: (1) assess these contributions; (2) identify potential research directions for existing genomics programs; and (3) highlight the opportunities of a coordinated, multi-species genomics effort for the science and policymaking communities. Their efforts culminated in a workshop sponsored by the U.S. Department of Agriculture, Department of Energy, National Science Foundation, and the National Institutes of Health. The workshop was convened on February 19, 2002. The goal of the workshop was to focus on domestic animal genomics and its integration with other genomics and functional genomics projects.
Reproductive Genomics in Domestic Animals is a thorough examination of genomics in the livestock industry, encompassing genome sciences, genome biotechnology, and reproduction. Recent developments in molecular genetics and genomics have enabled scientists to identify and characterize genes contributing to the complexity of reproduction in domestic animals, allowing scientists to improve reproductive traits. Providing the livestock industry with essential tools for enhancing reproductive efficiency, Reproductive Genomics in Domestic Animals surveys the current status of reproductive genomes and looks to the future direction of research.
Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.
Clinical Biochemistry of Domestic Animals, Second Edition, Volume I, is a major revision of the first edition prompted by the marked expansion of knowledge in the clinical biochemistry of animals. In keeping with this expansion of knowledge, this edition is comprised of two volumes. Chapters on the pancreas, thyroid, and pituitary-adrenal systems have been separated and entirely rewritten. Completely new chapters on muscle metabolism, iron metabolism, blood clotting, and gastrointestinal function have been added. All the chapters of the first edition have been revised with pertinent new information, and many have been completely rewritten. This volume contains 10 chapters and opens with a discussion of carbohydrate metabolism and associated disorders. Separate chapters follow on lipid metabolism, plasma proteins, and porphyrins. Subsequent chapters deal with liver, pancreatic, and thyroid functions; the role of the pituitary and adrenal glands in health and disease; the function of calcium, inorganic phosphorus, and magnesium metabolism in health and disease; and iron metabolism.
This publication provides an update on the current status of gene maps in different livestock and pet/companion animal species. The findings summarized in species specific commentaries and original articles testify the rapid advances made in the field of animal genomics. Of significant interest is the fact that current investigations are providing headways for two important and exciting research fronts: targeted high-resolution mapping leading to the application of genomic information in addressing questions of economic and biological significance in animals, and the initiation of whole genome sequencing projects for some of the animal species. Like in humans and mice, this will set the stage for a new level of research and real time complex analysis of the genomes of these species. Animal Genomics signifies the beginning of a new era in this field and celebrates the achievements of the past 20 years of genomics research. It will be of special interest to researchers involved in genome analysis - both gross chromosomal as well as molecular - in various animal species, and to comparative and evolutionary geneticists.
The sequencing of the mouse genome has placed the mouse front and center as the most important mammalian genetics model. However, no recent volume has detailed the genetic contributions the mouse has made across the spectrum of the life sciences; this book aims to fill that vacuum. Mouse genetics research has made enormous contributions to the understanding of basic genetics, human genetics, and livestock genetics and breeding. The wide-ranging topics in the book include the mouse genome sequencing effort, molecular dissection of quantitative traits, embryo biotechnology, ENU mutagenesis, and genetics of disease resistance, and have been written by experts in their respective fields.Chapter 1: The Beginnings - Ode To A Wee Mouse (58 KB)
Advances in genome-scale DNA sequencing technologies have revolutionized genetic research on ancient organisms, extinct species, and past environments. When it is recoverable after hundreds or thousands of years of unintended preservation, “ancient DNA” (or aDNA) is often highly degraded, necessitating specialized handling and analytical approaches. Paleogenomics defines the field of reconstructing and analyzing the genomes of historic or long-dead organisms, most often through comparison with modern representatives of the same or similar species. The opportunity to isolate and study paleogenomes has radically transformed many fields, spanning biology, anthropology, agriculture, and medicine. Examples include understanding evolutionary relationships of extinct species known only from fossils, the domestication of plants and animals, and the evolution and geographical spread of certain pathogens. This pioneering book presents a snapshot view of the history, current status, and future prospects of paleogenomics, taking a broad viewpoint that covers a range of topics and organisms to provide an up-to-date status of the applications, challenges, and promise of the field. This book is intended for a variety of readerships, including upper-level undergraduate and graduate students, professionals and experts in the field, as well as anyone excited by the extraordinary insights that paleogenomics offers.