This text provides a review of relevant knowledge in the area of constitutive modelling of concrete steel bonds and their interaction. It discusses the problems encountered in assembling the various elements with the purpose of constructing the model of an element made of reinforced concrete. Whether physically or empirically based, very simple or sophisticated, long-established or brand new, the models presented in this book are produced in as rational a framework as possible, and are accompanied by comments on their advantages and limitations.
This book presents the proceedings of an International Conference on Advances in Engineering Structures, Mechanics & Construction, held in Waterloo, Ontario, Canada, May 14-17, 2006. The contents include contains the texts of all three plenary presentations and all seventy-three technical papers by more than 153 authors, presenting the latest advances in engineering structures, mechanics and construction research and practice.
"In 1993, the CEB Commission 2 Material and Behavior Modelling established the Task Group 2.5 Bond Models. It's terms of reference were ... to write a state-of-art report concerning bond of reinforcement in concrete and later recommend how the knowledge could be applied in practice (Model Code like text proposal)... {This work} covers the first part ... the state-of-art report."--Pref.
Mechanics of Structures and Materials: Advancements and Challenges is a collection of peer-reviewed papers presented at the 24th Australasian Conference on the Mechanics of Structures and Materials (ACMSM24, Curtin University, Perth, Western Australia, 6-9 December 2016). The contributions from academics, researchers and practising engineers from Australasian, Asia-pacific region and around the world, cover a wide range of topics, including: • Structural mechanics • Computational mechanics • Reinforced and prestressed concrete structures • Steel structures • Composite structures • Civil engineering materials • Fire engineering • Coastal and offshore structures • Dynamic analysis of structures • Structural health monitoring and damage identification • Structural reliability analysis and design • Structural optimization • Fracture and damage mechanics • Soil mechanics and foundation engineering • Pavement materials and technology • Shock and impact loading • Earthquake loading • Traffic and other man-made loadings • Wave and wind loading • Thermal effects • Design codes Mechanics of Structures and Materials: Advancements and Challenges will be of interest to academics and professionals involved in Structural Engineering and Materials Science.
Advances in Civil Function Structure and Industrial Architecture contains the Proceedings of 5th International Conference on Civil Function Structure and Industrial Architecture (CFSIA 2022), which was held on January 21-23, 2022, in Harbin, China. The Proceedings of CFSIA 2022 is intended to share scientific research results and cutting-edge technologies in the field of civil function structure and control engineering. Researchers, practitioners and academics in these disciplines will find the book useful. Over 90 papers are featured. Many topics are covered, but the contributions may be seen to fall into one of six broad themes of the conference, namely: (i) Engineering Structure (Engineering Advanced Technology, Engineering Structure and Seismic Resistance, High-rise Building and Large-span Structure, Bridge Engineering, Special Structure, Construction Technology, Monitoring and Control of Structure, Cartography and GIS, Concrete Structure, Construction and Control, etc.); (ii) Intelligent Building (Predictive Maintenance, Converged Networks, Wireless Retrofit, Biometric Integration, Computer Management System Engineering, Building Equipment Automatic Control System Engineering, etc.); (iii) Smart City (Intelligent Construction, Intelligent Transportation, Risk Management and Decision Making for Intelligent Construction, Intelligent Building Automation Control System, etc.); (iv) Structural Seismic Resistance (Structural Seismic Design, Earthquakes and Ground Motions, Building Site, Foundation and Basis, Principles of Structural Seismic Design Calculation, Seismic Shear Adjustment and Minimum Seismic Shear Requirements, etc.); (v) Monitoring and Testing (Steel Structure Stress Monitoring, Stress Change Monitoring for Large Construction Projects, Structural Health Monitoring, Foundation Pit Monitoring, Temperature Monitoring for Large Volume Concrete Pouring, etc.); (vi) Engineering Facility (Machinery Facility, Electrical Facility, Stationary Facility, Non-standard Facility, Compressor, Continuous Transmission Facility, etc.).
This text details the proceedings of the 11th European Conference on Earthquake Engineering. CD-ROM contains full text of the 650 papers in printed form. This would have been 6 volumes of 1000 pages each. Topics covered: are: Engineering seismology; Experimental aspects for soils, rocks and construction material; Computational aspects for materials, structures and soil-structure interaction; Civil engineering projects; Active and passive isolation; Industrial facilities, lifelines and equipment; Vulnerability, seismic risk and strengthening; Site effects and spatial variability of seismic motions; Reliability analyses and probabilistic aspects; Design criteria, codees and standards; Eurocode 8 and national applications; Seismic risk in the Mediterranean basin; Post earthquake investigations;
The First International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2005) was held in Cape Town, South Africa, in November 2005. The conference was a collaborative venture by researchers from the South African Research Programme in Concrete Materials (based at the Universities of Cape Town and The Witwatersrand) and The Construction Materials Section at Leipzig University in Germany. The conference focused on appropriate repairing, maintaining, rehabilitating, and, if necessary, retrofitting existing infrastructure with a view to extending its life and maximising its economic return.
Focusing on fundamental principles, Hydro-Environmental Analysis: Freshwater Environments presents in-depth information about freshwater environments and how they are influenced by regulation. It provides a holistic approach, exploring the factors that impact water quality and quantity, and the regulations, policy and management methods that are necessary to maintain this vital resource. It offers a historical viewpoint as well as an overview and foundation of the physical, chemical, and biological characteristics affecting the management of freshwater environments. The book concentrates on broad and general concepts, providing an interdisciplinary foundation. The author covers the methods of measurement and classification; chemical, physical, and biological characteristics; indicators of ecological health; and management and restoration. He also considers common indicators of environmental health; characteristics and operations of regulatory control structures; applicable laws and regulations; and restoration methods. The text delves into rivers and streams in the first half and lakes and reservoirs in the second half. Each section centers on the characteristics of those systems and methods of classification, and then moves on to discuss the physical, chemical, and biological characteristics of each. In the section on lakes and reservoirs, it examines the characteristics and operations of regulatory structures, and presents the methods commonly used to assess the environmental health or integrity of these water bodies. It also introduces considerations for restoration, and presents two unique aquatic environments: wetlands and reservoir tailwaters. Written from an engineering perspective, the book is an ideal introduction to the aquatic and limnological sciences for students of environmental science, as well as students of environmental engineering. It also serves as a reference for engineers and scientists involved in the management, regulation, or restoration of freshwater environments.