Repetitive DNA Sequences

Repetitive DNA Sequences

Author: Andrew G. Clark

Publisher: MDPI

Published: 2020-03-05

Total Pages: 206

ISBN-13: 3039283669

DOWNLOAD EBOOK

Repetitive DNA is ubiquitous in eukaryotic genomes, and, in many species, comprises the bulk of the genome. Repeats include transposable elements that can self-mobilize and disperse around the genome, and tandemly-repeated satellite DNAs that increase in copy number due to replication slippage and unequal crossing over. Despite their abundance, repetitive DNA is often ignored in genomic studies due to technical challenges in their identification, assembly, and quantification. New technologies and methods are now providing the unprecedented power to analyze repetitive DNAs across diverse taxa. Repetitive DNA is of particular interest because it can represent distinct modes of genome evolution. Some repetitive DNA forms essential genome structures, such as telomeres and centromeres, which are required for proper chromosome maintenance and segregation, whereas others form piRNA clusters that regulate transposable elements; thus, these elements are expected to evolve under purifying selection. In contrast, other repeats evolve selfishly and produce genetic conflicts with their host species that drive adaptive evolution of host defense systems. However, the majority of repeats likely accumulate in eukaryotes in the absence of selection due to mechanisms of transposition and unequal crossing over. Even these neutral repeats may indirectly influence genome evolution as they reach high abundance. In this Special Issue, the contributing authors explore these questions from a range of perspectives.


Repetitive DNA

Repetitive DNA

Author: Manuel A. Garrido-Ramos

Publisher: Karger Medical and Scientific Publishers

Published: 2012

Total Pages: 239

ISBN-13: 3318021490

DOWNLOAD EBOOK

The experimental data that have been generated using new molecular techniques associated with the completion of genome projects have changed our perception of the structural features, functional implications and evolutionary dynamics of repetitive DNA sequences. This volume of Genome Dynamics provides a valuable update on recent developments in research into multigene families, centromeres, telomeres, microsatellite DNA, satellite DNA, and transposable elements. Each chapter presents a review by distinguished experts and analyzes repetitive DNA diversity and abundance, as well as the impact on genome structure, function and evolution. This publication is targeted at scientists and scholars at every level, from students to faculty members, and, indeed, anyone involved or interested in genetics, molecular evolution, molecular biology as well as genomics will find it a valuable source of up-to-date information.


DNA Fingerprinting: State of the Science

DNA Fingerprinting: State of the Science

Author: Sergio D. Pena

Publisher: Springer Science & Business Media

Published: 1993-07-01

Total Pages: 484

ISBN-13: 9783764329068

DOWNLOAD EBOOK

DNA fingerprinting had a well-defined birthday. In the March 7, 1985 issue of Nature, Alec Jeffreys and coworkers described the first develop ment ofmu1tilocus probes capable of simultaneously revealing hypervari ability at many loci in the human genome and called the procedure DNA fingerprinting. It was a royal birth in the best British tradition. In a few months the emerging technique had permitted the denouement of hith erto insoluble immigration and paternity disputes and was already heralded as a major revolution in forensic sciences. In the next year (October, 1986) DNA fingerprinting made a dramatic entree in criminal investigations with the Enderby murder case, whose story eventually was turned into a best-selling book ("The Blooding" by Joseph Wambaugh). Today DNA typing systems are routinely used in public and commercial forensic laboratories in at least 25 different countries and have replaced conventional protein markers as the methods of choice for solving paternity disputes and criminal cases. Moreover, DNA fingerprinting has emerged as a new domain of intense scientific activity, with myriad applications in just about every imaginable territory of life sciences. The Second International Conference on DNA Fingerprinting, which was held in Belo Horizonte, Brazil in November of 1992, was a clear proof of this.


Tandem Repeat Polymorphisms

Tandem Repeat Polymorphisms

Author: Anthony J. Hannan

Publisher: Springer Science & Business Media

Published: 2013-07-30

Total Pages: 223

ISBN-13: 1461454344

DOWNLOAD EBOOK

This book addresses the role of tandem repeat polymorphisms (TRPs) in genetic plasticity, evolution, development, biological processes, neural diversity, brain function, dysfunction and disease. There are hundreds of thousands of unique tandem repeats in the human genome and their polymorphic distributions have the potential to greatly influence functional diversity and disease susceptibility. Recent discoveries in this expanding field are critically reviewed and discussed in a range of subsequent chapters, with a focus on the role of TRPs and their various gene products in evolution, development, diverse molecular and cellular processes, brain function and disease.


Genome Stability

Genome Stability

Author: Igor Kovalchuk

Publisher: Academic Press

Published: 2021-07-17

Total Pages: 762

ISBN-13: 0323856802

DOWNLOAD EBOOK

Genome Stability: From Virus to Human Application, Second Edition, a volume in the Translational Epigenetics series, explores how various species maintain genome stability and genome diversification in response to environmental factors. Here, across thirty-eight chapters, leading researchers provide a deep analysis of genome stability in DNA/RNA viruses, prokaryotes, single cell eukaryotes, lower multicellular eukaryotes, and mammals, examining how epigenetic factors contribute to genome stability and how these species pass memories of encounters to progeny. Topics also include major DNA repair mechanisms, the role of chromatin in genome stability, human diseases associated with genome instability, and genome stability in response to aging. This second edition has been fully revised to address evolving research trends, including CRISPRs/Cas9 genome editing; conventional versus transgenic genome instability; breeding and genetic diseases associated with abnormal DNA repair; RNA and extrachromosomal DNA; cloning, stem cells, and embryo development; programmed genome instability; and conserved and divergent features of repair. This volume is an essential resource for geneticists, epigeneticists, and molecular biologists who are looking to gain a deeper understanding of this rapidly expanding field, and can also be of great use to advanced students who are looking to gain additional expertise in genome stability. - A deep analysis of genome stability research from various kingdoms, including epigenetics and transgenerational effects - Provides comprehensive coverage of mechanisms utilized by different organisms to maintain genomic stability - Contains applications of genome instability research and outcomes for human disease - Features all-new chapters on evolving areas of genome stability research, including CRISPRs/Cas9 genome editing, RNA and extrachromosomal DNA, programmed genome instability, and conserved and divergent features of repair


Bacterial Genomes

Bacterial Genomes

Author: Frans de Bruijn

Publisher: Springer Science & Business Media

Published: 1997-11-30

Total Pages: 824

ISBN-13: 9780412991417

DOWNLOAD EBOOK

A wide range of microbiologists, molecular biologists, and molecular evolutionary biologists will find this new volume of singular interest. It summarizes the present knowledge about the structure and stability of microbial genomes, and reviews the techniques used to analyze and fingerprint them. Maps of approximately thirty important microbes, along with articles on the construction and relevant features of the maps are included. The volume is not intended as a complete compendium of all information on microbial genomes, but rather focuses on approaches, methods and good examples of the analysis of small genomes.


Molecular Techniques in Taxonomy

Molecular Techniques in Taxonomy

Author: Godfrey M. Hewitt

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 404

ISBN-13: 3642839622

DOWNLOAD EBOOK

Taxonomy is fundamental to understanding the variety of life forms, and exciting expansions in molecular biology are re- volutionising the obtained data. This volume reviews the ma- jor molecular biological techniques that are applied in ta- xonomy. The chapters are arranged in three main sections:1) Overviews of important topics in molecular taxonomy; 2) Case studies of the successful application of molecular methods to taxonomic and evolutionary questions; 3) Protocols for a range of generally applicable methods. The described techni- ques include DNA-DNA hybridization, DNA fingerprinting, RFLP analysis, and PCR sequencing.


Heterochromatin

Heterochromatin

Author: Ram Sagar Verma

Publisher: Cambridge University Press

Published: 1988-05-27

Total Pages: 324

ISBN-13: 9780521334808

DOWNLOAD EBOOK

'The material included in Heterochromatin is impressively comprehensive and provides timely, authoritative information that would otherwise be difficult to obtain.' BioScience


Mobile DNA II

Mobile DNA II

Author: Nancy L. Craig

Publisher: Amer Society for Microbiology

Published: 2002

Total Pages: 1204

ISBN-13: 9781555812096

DOWNLOAD EBOOK

An extension of the original volume, reflecting the latest advances in understanding these elements. This title is published by the American Society for Microbiology Press and distributed by Taylor and Francis in rest of world territories.