Accuracy assessment of maps derived from remotely sensed data has continued to grow since the first edition of this groundbreaking book. As a result, the much-anticipated new edition is significantly expanded and enhanced to reflect growth in the field. The new edition features three new chapters, including: Fuzzy accuracy assessmentPositional accu
Remote Sensing of Forest Environments: Concepts and Case Studies is an edited volume intended to provide readers with a state-of-the-art synopsis of the current methods and applied applications employed in remote sensing the world's forests. The contributing authors have sought to illustrate and deepen our understanding of remote sensing of forests, providing new insights and indicating opportunities that are created when forests and forest practices are considered in concert with the evolving paradigm of remote sensing science. Following background and methods sections, this book introduces a series of case studies that exemplify the ways in which remotely sensed data are operationally used, as an element of the decision-making process, and in the scientific study of forests. Remote Sensing of Forest Environments: Concepts and Case Studies is designed to meet the needs of a professional audience composed of both practitioners and researchers. This book is also suitable as a secondary text for graduate-level students in Forestry, Environmental Science, Geography, Engineering, and Computer Science.
Remote sensing is an integral part of geography, GIS and cartography, used by academics in the field and professionals in all sorts of occupations. The 1990s saw the development of a range of new methods of classifying remote sensing images and data, both optical imaging and microwave imaging. This comprehensive survey of the various techniques pul
A volume in the Remote Sensing Handbook series, Remotely Sensed Data Characterization, Classification, and Accuracies documents the scientific and methodological advances that have taken place during the last 50 years. The other two volumes in the series are Land Resources Monitoring, Modeling, and Mapping with Remote Sensing, and Remote Sensing of
With the widespread availability of satellite and aircraft remote sensing image data in digital form, and the ready access most remote sensing practitioners have to computing systems for image interpretation, there is a need to draw together the range of digital image processing procedures and methodologies commonly used in this field into a single treatment. It is the intention of this book to provide such a function, at a level meaningful to the non-specialist digital image analyst, but in sufficient detail that algorithm limitations, alternative procedures and current trends can be appreciated. Often the applications specialist in remote sensing wishing to make use of digital processing procedures has had to depend upon either the mathematically detailed treatments of image processing found in the electrical engineering and computer science literature, or the sometimes necessarily superficial treatments given in general texts on remote sensing. This book seeks to redress that situation. Both image enhancement and classification techniques are covered making the material relevant in those applications in which photointerpretation is used for information extraction and in those wherein information is obtained by classification.
Remotely-sensed images of the Earth provide information about the geographical distribution of natural and cultural features, as well as a record of changes in environmental conditions over time. This text offers technical guidance to those involved in processing and classifying such data.
This book is a completely updated, greatly expanded version of the previously successful volume by the author. The Second Edition includes new results and data, and discusses a unified framework and rationale for designing and evaluating image processing algorithms.Written from the viewpoint that image processing supports remote sensing science, this book describes physical models for remote sensing phenomenology and sensors and how they contribute to models for remote-sensing data. The text then presents image processing techniques and interprets them in terms of these models. Spectral, spatial, and geometric models are used to introduce advanced image processing techniques such as hyperspectral image analysis, fusion of multisensor images, and digital elevationmodel extraction from stereo imagery.The material is suited for graduate level engineering, physical and natural science courses, or practicing remote sensing scientists. Each chapter is enhanced by student exercises designed to stimulate an understanding of the material. Over 300 figuresare produced specifically for this book, and numerous tables provide a rich bibliography of the research literature.
A volume in the three-volume Remote Sensing Handbook series, Remote Sensing of Water Resources, Disasters, and Urban Studies documents the scientific and methodological advances that have taken place during the last 50 years. The other two volumes in the series are Remotely Sensed Data Characterization, Classification, and Accuracies, and Land Reso
An important text that identifies and introduces new trends in image analysis Digital Analysis of Remotely Sensed Imagery provides thorough coverage of the entire process of analyzing remotely sensed data for the purpose of producing accurate representations in thematic map format. Written in easy-to-follow language with minimal technical jargon, the book explores cutting-edge techniques and trends in image analysis, as well as the relationship between image processing and other recently emerged special technologies.
The first of its kind, this book reviews image processing tools and techniques including Independent Component Analysis, Mutual Information, Markov Random Field Models and Support Vector Machines. The book also explores a number of experimental examples based on a variety of remote sensors. The book will be useful to people involved in hyperspectral imaging research, as well as by remote-sensing data like geologists, hydrologists, environmental scientists, civil engineers and computer scientists.