Integrating decades of research conducted by leading scientists in the field, Remote Sensing of Energy Fluxes and Soil Moisture Content provides an overview of state-of-the-art methods and modeling techniques employed for deriving spatio-temporal estimates of energy fluxes and soil surface moisture from remote sensing. It also underscores the range
Integrating decades of research conducted by leading scientists in the field, Remote Sensing of Energy Fluxes and Soil Moisture Content provides an overview of state-of-the-art methods and modeling techniques employed for deriving spatio-temporal estimates of energy fluxes and soil surface moisture from remote sensing. It also underscores the range of such techniques available nowadays as well as the operationally distributed networks that provide today in-situ validated relevant observations. The book brings together three types of articles: Comprehensive reviews that examine the developments in concepts, methods, and techniques employed in deriving land surface heat fluxes as well as soil surface moisture on field, regional, and large scales, paying particular emphasis to the techniques exploiting Earth Observation (EO) technology Detailed insights into the principles and operation of the most widely applied approaches for the quantification and analysis of surface fluxes and soil moisture with case studies that directly show the great applicability of remote sensing in this field, or articles discussing specific issues in the retrievals of those parameters from space Focused articles integrating current knowledge and scientific understanding in the remote sensing of energy fluxes and soil moisture, that are highlighting the main issues, challenges, and future prospects of this emerging technology. Designed with different users in mind, the book is organized in four more or less independent units that make specific information easy to find. It presents a discussion on the future trends and prospects, underlying the scientific challenges that need to be addressed adequately in order to derive more accurate estimates of those parameters from space.
This book is the most comprehensive documentation of the scientific and methodological advances that have taken place in understanding remote sensing data, methods, and applications over last 50 years. In a very practical way it demonstrates the experience, utility, methods and models used in studying a wide array of water applications. There are more than 100 leading global experts in the field contributing to this work.
The continental hydrological cycle is one of the least understood components of the climate system. The understanding of the different processes involved is important in the fields of hydrology and meteorology.In this volume the main applications for continental hydrology are presented, including the characterization of the states of continental surfaces (water state, snow cover, etc.) using active and passive remote sensing, monitoring the Antarctic ice sheet and land water surface heights using radar altimetry, the characterization of redistributions of water masses using the GRACE mission, the potential of GNSS-R technology in hydrology, and remote sensing data assimilation in hydrological models.This book, part of a set of six volumes, has been produced by scientists who are internationally renowned in their fields. It is addressed to students (engineers, Masters, PhD) , engineers and scientists, specialists in remote sensing applied to hydrology. Through this pedagogical work, the authors contribute to breaking down the barriers that hinder the use of Earth observation data. - Provides clear and concise descriptions of modern remote sensing methods - Explores the most current remote sensing techniques with physical aspects of the measurement (theory) and their applications - Provides chapters on physical principles, measurement, and data processing for each technique described - Describes optical remote sensing technology, including a description of acquisition systems and measurement corrections to be made
Generating a satisfactory classification image from remote sensing data is not a straightforward task. Many factors contribute to this difficulty including the characteristics of a study area, availability of suitable remote sensing data, ancillary and ground reference data, proper use of variables and classification algorithms, and the analyst's e
The phenomenon of evaporation in the natural environment is of interest in various diverse disciplines. This book is an attempt to present a coherent and organized introduction to theoretical concepts and relationships useful in analyzing this phe nomenon, and to give an outline of their history and their application. The main objective is to provide a better understanding of evaporation, and to connect some of the approaches and paradigms, that have been developed in different disciplines concerned with this phenomenon. The book is intended for professional scientists and engineers, who are active in hydrology, meteorology, agronomy, oceanography, climatology and related environ mental fields, and who wish to study prevailing concepts on evaporation. At the same time, I hope that the book will be useful to workers in fluid dynamics, who want to become acquainted with applications to an important and interesting natural phenomenon. As suggested in its subtitle, the book consists of three major parts. The first, consisting of Chapters I and 2, gives a general ouline of the problem and a history of the theories of evaporation from ancient times through the end of the nineteenth century. This history is far from exhaustive, but it sket~hes the background and the ideas that led directly to the scientific revolution in Europe and, ultimately, to our present-day knowledge.
Recent advances in the modeling and remote sensing of droughts and floods Droughts and floods are causing increasing damage worldwide, often with devastating short- and long-term impacts on human society. Forecasting when they will occur, monitoring them as they develop, and learning from the past to improve disaster management is vital. Global Drought and Flood: Observation, Modeling, and Prediction presents recent advances in the modeling and remote sensing of droughts and floods. It also describes the techniques and products currently available and how they are being used in practice. Volume highlights include: Remote sensing approaches for mapping droughts and floods Physical and statistical models for monitoring and forecasting hydrologic hazards Features of various drought and flood systems and products Use by governments, humanitarian, and development stakeholders in recent disaster cases Improving the collaboration between hazard information provision and end users The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
A comprehensive guide for both fundamentals and real-world applications of environmental engineering Written by noted experts, Handbook of Environmental Engineering offers a comprehensive guide to environmental engineers who desire to contribute to mitigating problems, such as flooding, caused by extreme weather events, protecting populations in coastal areas threatened by rising sea levels, reducing illnesses caused by polluted air, soil, and water from improperly regulated industrial and transportation activities, promoting the safety of the food supply. Contributors not only cover such timely environmental topics related to soils, water, and air, minimizing pollution created by industrial plants and processes, and managing wastewater, hazardous, solid, and other industrial wastes, but also treat such vital topics as porous pavement design, aerosol measurements, noise pollution control, and industrial waste auditing. This important handbook: Enables environmental engineers to treat problems in systematic ways Discusses climate issues in ways useful for environmental engineers Covers up-to-date measurement techniques important in environmental engineering Reviews current developments in environmental law for environmental engineers Includes information on water quality and wastewater engineering Informs environmental engineers about methods of dealing with industrial and municipal waste, including hazardous waste Designed for use by practitioners, students, and researchers, Handbook of Environmental Engineering contains the most recent information to enable a clear understanding of major environmental issues.
Evapotranspiration (ET) is a critical component of the water and energy balances, and the number of remote sensing-based ET products and estimation methods has increased in recent years. Various aspects of remote sensing of ET are reported in the 11 papers published in this book. The major research areas covered by this book include inter-comparison and performance evaluation of widely used one- and two-source energy balance models, a new dual-source model (Soil Plant Atmosphere and Remote Sensing Evapotranspiration, SPARSE), and a process-based model (ETMonitor); assessment of multi-source (e.g., remote sensing, reanalysis, and land surface model) ET products; development or improvement of data fusion frameworks to predict continuous daily ET at a high spatial resolution (field-scale or 30 m) by fusing the advanced spaceborne thermal emission reflectance radiometer (ASTER), the moderate resolution imaging spectroradiometer (MODIS), and Landsat data; and investigating uncertainties in ET estimates using an ET ensemble composed of several land surface models and diagnostic datasets. The effects of the differences between ET products on water resources and ecosystem management were also investigated. More accurate ET estimates and improved understanding of remotely sensed ET products are crucial for maximizing crop productivity while minimizing water losses and management costs.