Nearly 20 million nuclear medicine procedures are carried out each year in the United States alone to diagnose and treat cancers, cardiovascular disease, and certain neurological disorders. Many of the advancements in nuclear medicine have been the result of research investments made during the past 50 years where these procedures are now a routine part of clinical care. Although nuclear medicine plays an important role in biomedical research and disease management, its promise is only beginning to be realized. Advancing Nuclear Medicine Through Innovation highlights the exciting emerging opportunities in nuclear medicine, which include assessing the efficacy of new drugs in development, individualizing treatment to the patient, and understanding the biology of human diseases. Health care and pharmaceutical professionals will be most interested in this book's examination of the challenges the field faces and its recommendations for ways to reduce these impediments.
This work is devoted to understanding the recent advances in nuclear medicine and molecular imaging technologies along with their application to integrated medical therapy and future drug development. This anthology is based on the international symposium in 2015 entitled “Perspective on Nuclear Medicine for Molecular Diagnosis and Integrated Therapy. “The symposium provided an opportunity to exchange ideas on how to promote nuclear medicine technology and how to extend the technology to medical therapy and drug development, and was also a good opportunity to discuss the future perspective of nuclear medicine and molecular imaging by worldwide leaders in the field. Molecular imaging technologies have been rapidly developed worldwide in recent years. Among those developments, nuclear medicine has come to play an important role in quantitative analysis of biological process in vivo as well as in wide clinical use. With the current progress of nuclear medicine and molecular imaging, this modality has been applied for treatment monitoring and predicting its outcome with the use of optimal imaging biomarkers and suitable quantitative analysis. Truly, a new era has arrived with clinical use of nuclear medicine and molecular imaging for personalized medicine. This volume will benefit a wide variety of researchers in life science including those working in drug development, molecular imaging, and medical therapy as well as physicians who utilize diagnostic imaging.
Covering both the fundamentals and recent developments in this fast-changing field, Essentials of Nuclear Medicine and Molecular Imaging, 7th Edition, is a must-have resource for radiology residents, nuclear medicine residents and fellows, nuclear medicine specialists, and nuclear medicine technicians. Known for its clear and easily understood writing style, superb illustrations, and self-assessment features, this updated classic is an ideal reference for all diagnostic imaging and therapeutic patient care related to nuclear medicine, as well as an excellent review tool for certification or MOC preparation. - Provides comprehensive, clear explanations of everything from principles of human physiology, pathology, physics, radioactivity, radiopharmaceuticals, radiation safety, and legal requirements to hot topics such as new brain and neuroendocrine tumor agents and hybrid imaging, including PET/MR and PET/CT. - Covers the imaging of every body system, as well as inflammation, infection and tumor imaging; pearls and pitfalls for every chapter; and pediatric doses and guidelines in compliance with the Image Gently and Image Wisely programs. - Features a separate self-assessment section on differential diagnoses, imaging procedures and artifacts, and safety issues with unknown cases, questions, answers, and explanations. - Includes new images and illustrations, for a total of 430 high-quality, multi-modality examples throughout the text. - Reflects recent advances in the field, including updated nuclear medicine imaging and therapy guidelines • Updated dosimetry values and effective doses for all radiopharmaceuticals with new values from the 2015 International Commission on Radiological Protection • Updated information regarding advances in brain imaging, including amyloid, dopamine transporter and dementia imaging • Inclusion of Ga-68 DOTA PET/CT for neuroendocrine tumors • Expanded information on correlative and hybrid imaging with SPECT/CT • New myocardial agents • and more. - Contains extensive appendices including updated comprehensive imaging protocols for routine and hybrid imaging, pregnancy and breastfeeding guidelines, pediatric dosages, non-radioactive pharmaceuticals used in interventional and cardiac stress imaging, and radioactivity conversion tables.
This book is a comprehensive guide to radiopharmaceutical chemistry. The stunning clinical successes of nuclear imaging and targeted radiotherapy have resulted in rapid growth in the field of radiopharmaceutical chemistry, an essential component of nuclear medicine and radiology. However, at this point, interest in the field outpaces the academic and educational infrastructure needed to train radiopharmaceutical chemists. For example, the vast majority of texts that address radiopharmaceutical chemistry do so only peripherally, focusing instead on nuclear chemistry (i.e. nuclear reactions in reactors), heavy element radiochemistry (i.e. the decomposition of radioactive waste), or solely on the clinical applications of radiopharmaceuticals (e.g. the use of PET tracers in oncology). This text fills that gap by focusing on the chemistry of radiopharmaceuticals, with key coverage of how that knowledge translates to the development of diagnostic and therapeutic radiopharmaceuticals for the clinic. The text is divided into three overarching sections: First Principles, Radiochemistry, and Special Topics. The first is a general overview covering fundamental and broad issues like “The Production of Radionuclides” and “Basics of Radiochemistry”. The second section is the main focus of the book. In this section, each chapter’s author will delve much deeper into the subject matter, covering both well established and state-of-the-art techniques in radiopharmaceutical chemistry. This section will be divided according to radionuclide and will include chapters on radiolabeling methods using all of the common nuclides employed in radiopharmaceuticals, including four chapters on the ubiquitously used fluorine-18 and a “Best of the Rest” chapter to cover emerging radionuclides. Finally, the third section of the book is dedicated to special topics with important information for radiochemists, including “Bioconjugation Methods,” “Click Chemistry in Radiochemistry”, and “Radiochemical Instrumentation.” This is an ideal educational guide for nuclear medicine physicians, radiologists, and radiopharmaceutical chemists, as well as residents and trainees in all of these areas.
This multidisciplinary textbook is designed to be the standard on the subject and is geared for use by physicians who are involved in the care and/or diagnosis of cancer patients. Comprehensive coverage is provided on all aspects of radioguided surgery. Practical information is readily accessible and throughout there is an emphasis on improved decision making. Tables present the indications, performance, and interpretation of procedures at a glance. A wealth of illustrations, including a full-color insert, enhances the application of new concepts.
This volume addresses a wide range of issues in the field of nuclear medicine imaging, with an emphasis on the latest research findings. Initial chapters set the scene by considering the role of imaging in nuclear medicine from the medical perspective and discussing the implications of novel agents and applications for imaging. The physics at the basis of the most modern imaging systems is described, and the reader is introduced to the latest advances in image reconstruction and noise correction. Various novel concepts are then discussed, including those developed within the framework of the EURATOM FP7 MADEIRA research project on the optimization of imaging procedures in order to permit a reduction in the radiation dose to healthy tissues. Advances in quality control and quality assurance are covered, and the book concludes by listing rules of thumb for imaging that will be of use to both beginners and experienced researchers.
Radioimmunotherapy, also known as systemic targeted radiation therapy, uses antibodies, antibody fragments, or compounds as carriers to guide radiation to the targets. It is a topic rapidly increasing in importance and success in treatment of cancer patients. This book represents a comprehensive amalgamation of the radiation physics, chemistry, radiobiology, tumor models, and clinical data for targeted radionuclide therapy. It outlines the current challenges and provides a glimpse at future directions. With significant advances in cell biology and molecular engineering, many targeting constructs are now available that will safely deliver these highly cytotoxic radionuclides in a targeted fashion. A companion website includes the full text and an image bank.
Now in its 5th Edition, this outstanding volume in the popular Requisites series thoroughly covers the fast-changing field of nuclear medicine and molecular imaging. Ideal for residency, clinical rotations, and board review, this compact and authoritative volume by Drs. Janis O'Malley and Harvey Ziessman covers the conceptual, factual, and interpretive information you need to know for success on exams and in clinical practice. NEW to this edition: - More content on molecular imaging and the latest advances in clinical applications, including positron emission tomography (PET), SPECT/CT, PET/CT, and PET/MRI hybrid imaging. - Inclusion of newly approved tracers such as Ga68 DOTA, F-18 amyloid, and F-18 PSMA. - Expanded and integrated content on physics and non-interpretive aspects, including regulatory issues, radiation safety, and quality control. - Up-to-date applications of nuclear medicine in the endocrine, skeletal, hepatobiliary, genitourinary, pulmonary, gastrointestinal, central nervous, and cardiac systems, as well as PET applications for oncology. In the outstanding Requisites tradition, the 5th Edition also: - Summarizes key information with numerous outlines, tables, pearls, pitfalls, and frequently asked questions. - Focuses on essentials to pass the certifying board exam and ensure accurate diagnoses in clinical practice. - Helps you clearly visualize the findings you're likely to see in practice and on exams with nearly 200 full-color images.
This book is an essential guide for all practitioners. The emphasis throughout is on the practice of nuclear medicine. Primarily aimed at the radiologist, physician, physicist or technologist starting in nuclear medicine, it will also appeal to more experienced practitioners who are keen to stay up-to-date. The practical approach with tables as "recipes" for acquisition protocols means it is essential for any departmental shelf. 3rd edition expanded - now covering areas of development in nuclear medicine, such as PET and other methods of tumour imaging, data processing. All illustrations are up-to-date to reflect current standards of image quality.
This book provides comprehensive and detailed information on the scientific bases of nuclear medicine, addressing a wide variety of topics and explaining the concepts that underlie many of the investigations and procedures performed in the field. The book is divided into six sections that cover the physics and chemistry of nuclear medicine besides associated quality assurance/quality control procedures; dosimetry and radiation biology; SPECT and PET imaging instrumentation plus CT imaging technology in hybrid modalities; data analysis including image processing, reconstruction, radiomics, image degrading correction techniques, along with image quantitation and kinetic modeling. Within these sections, particular attention is paid to recent developments and the advances in knowledge that have taken place since release of the first edition in 2011. Several entirely new chapters have been included and the remaining chapters, thoroughly updated. Innovations in the ever-expanding field of nuclear medicine are predominantly due to integration of the basic sciences with complex technological advances. This excellently illustrated book on the subject will be of interest to not only nuclear medicine physicists and physicians but also clinical scientists, radiologists, radiopharmacists, medical students and technologists.