Random Matrices and the Six-Vertex Model

Random Matrices and the Six-Vertex Model

Author: Pavel Bleher

Publisher: American Mathematical Soc.

Published: 2013-12-04

Total Pages: 237

ISBN-13: 1470409615

DOWNLOAD EBOOK

This book provides a detailed description of the Riemann-Hilbert approach (RH approach) to the asymptotic analysis of both continuous and discrete orthogonal polynomials, and applications to random matrix models as well as to the six-vertex model. The RH approach was an important ingredient in the proofs of universality in unitary matrix models. This book gives an introduction to the unitary matrix models and discusses bulk and edge universality. The six-vertex model is an exactly solvable two-dimensional model in statistical physics, and thanks to the Izergin-Korepin formula for the model with domain wall boundary conditions, its partition function matches that of a unitary matrix model with nonpolynomial interaction. The authors introduce in this book the six-vertex model and include a proof of the Izergin-Korepin formula. Using the RH approach, they explicitly calculate the leading and subleading terms in the thermodynamic asymptotic behavior of the partition function of the six-vertex model with domain wall boundary conditions in all the three phases: disordered, ferroelectric, and antiferroelectric. Titles in this series are co-published with the Centre de Recherches Mathématiques.


Integrable Systems and Random Matrices

Integrable Systems and Random Matrices

Author: Jinho Baik

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 448

ISBN-13: 0821842404

DOWNLOAD EBOOK

This volume contains the proceedings of a conference held at the Courant Institute in 2006 to celebrate the 60th birthday of Percy A. Deift. The program reflected the wide-ranging contributions of Professor Deift to analysis with emphasis on recent developments in Random Matrix Theory and integrable systems. The articles in this volume present a broad view on the state of the art in these fields. Topics on random matrices include the distributions and stochastic processes associated with local eigenvalue statistics, as well as their appearance in combinatorial models such as TASEP, last passage percolation and tilings. The contributions in integrable systems mostly deal with focusing NLS, the Camassa-Holm equation and the Toda lattice. A number of papers are devoted to techniques that are used in both fields. These techniques are related to orthogonal polynomials, operator determinants, special functions, Riemann-Hilbert problems, direct and inverse spectral theory. Of special interest is the article of Percy Deift in which he discusses some open problems of Random Matrix Theory and the theory of integrable systems.


Stochastic Processes and Random Matrices

Stochastic Processes and Random Matrices

Author: Grégory Schehr

Publisher: Oxford University Press

Published: 2017-08-15

Total Pages: 432

ISBN-13: 0192517864

DOWNLOAD EBOOK

The field of stochastic processes and Random Matrix Theory (RMT) has been a rapidly evolving subject during the last fifteen years. The continuous development and discovery of new tools, connections and ideas have led to an avalanche of new results. These breakthroughs have been made possible thanks, to a large extent, to the recent development of various new techniques in RMT. Matrix models have been playing an important role in theoretical physics for a long time and they are currently also a very active domain of research in mathematics. An emblematic example of these recent advances concerns the theory of growth phenomena in the Kardar-Parisi-Zhang (KPZ) universality class where the joint efforts of physicists and mathematicians during the last twenty years have unveiled the beautiful connections between this fundamental problem of statistical mechanics and the theory of random matrices, namely the fluctuations of the largest eigenvalue of certain ensembles of random matrices. This text not only covers this topic in detail but also presents more recent developments that have emerged from these discoveries, for instance in the context of low dimensional heat transport (on the physics side) or integrable probability (on the mathematical side).


Toeplitz Operators and Random Matrices

Toeplitz Operators and Random Matrices

Author: Estelle Basor

Publisher: Springer Nature

Published: 2023-01-01

Total Pages: 606

ISBN-13: 3031138511

DOWNLOAD EBOOK

This volume is dedicated to the memory of Harold Widom (1932–2021), an outstanding mathematician who has enriched mathematics with his ideas and ground breaking work since the 1950s until the present time. It contains a biography of Harold Widom, personal notes written by his former students or colleagues, and also his last, previously unpublished paper on domain walls in a Heisenberg–Ising chain. Widom's most famous contributions were made to Toeplitz operators and random matrices. While his work on random matrices is part of almost all the present-day research activities in this field, his work in Toeplitz operators and matrices was done mainly before 2000 and is therefore described in a contribution devoted to his achievements in just this area. The volume contains 18 invited and refereed research and expository papers on Toeplitz operators and random matrices. These present new results or new perspectives on topics related to Widom's work.


Random Matrix Models and Their Applications

Random Matrix Models and Their Applications

Author: Pavel Bleher

Publisher: Cambridge University Press

Published: 2001-06-04

Total Pages: 454

ISBN-13: 9780521802093

DOWNLOAD EBOOK

Expository articles on random matrix theory emphasizing the exchange of ideas between the physical and mathematical communities.


New Trends in Mathematical Physics

New Trends in Mathematical Physics

Author: Vladas Sidoravicius

Publisher: Springer Science & Business Media

Published: 2009-08-31

Total Pages: 886

ISBN-13: 9048128102

DOWNLOAD EBOOK

This book collects selected papers written by invited and plenary speakers of the 15th International Congress on Mathematical Physics (ICMP) in the aftermath of the conference. In extensive review articles and expository texts as well as advanced research articles the world leading experts present the state of the art in modern mathematical physics. New mathematical concepts and ideas are introduced by prominent mathematicalphysicists and mathematicians, covering among others the fields of Dynamical Systems, Operator Algebras, Partial Differential Equations, Probability Theory, Random Matrices, Condensed Matter Physics, Statistical Mechanics, General Relativity, Quantum Mechanics, Quantum Field Theory, Quantum Information and String Theory. All together the contributions in this book give a panoramic view of the latest developments in mathematical physics. They will help readers with a general interest in mathematical physics to get an update on the most recent developments in their field, and give a broad overview on actual and future research directions in this fascinating and rapidly expanding area.


Random Walks, Boundaries and Spectra

Random Walks, Boundaries and Spectra

Author: Daniel Lenz

Publisher: Springer Science & Business Media

Published: 2011-06-16

Total Pages: 345

ISBN-13: 3034602448

DOWNLOAD EBOOK

These proceedings represent the current state of research on the topics 'boundary theory' and 'spectral and probability theory' of random walks on infinite graphs. They are the result of the two workshops held in Styria (Graz and St. Kathrein am Offenegg, Austria) between June 29th and July 5th, 2009. Many of the participants joined both meetings. Even though the perspectives range from very different fields of mathematics, they all contribute with important results to the same wonderful topic from structure theory, which, by extending a quotation of Laurent Saloff-Coste, could be described by 'exploration of groups by random processes'.


A Dynamical Approach to Random Matrix Theory

A Dynamical Approach to Random Matrix Theory

Author: László Erdős

Publisher: American Mathematical Soc.

Published: 2017-08-30

Total Pages: 239

ISBN-13: 1470436485

DOWNLOAD EBOOK

A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.


An Introduction to Random Matrices

An Introduction to Random Matrices

Author: Greg W. Anderson

Publisher: Cambridge University Press

Published: 2010

Total Pages: 507

ISBN-13: 0521194520

DOWNLOAD EBOOK

A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.