As evidenced by five Nobel Prizes in physics, radio astronomy in its 80-year history has contributed greatly to our understanding of the universe. Yet for too long, there has been no suitable textbook on radio astronomy for undergraduate students.Fundamentals of Radio Astronomy: Observational Methods is the first undergraduate-level textbook exclus
For the past fifteen years, acclaimed science writer Margaret Wertheim has been collecting the works of "outsider physicists," many without formal training and all convinced that they have found true alternative theories of the universe. Jim Carter, the Einstein of outsiders, has developed his own complete theory of matter and energy and gravity that he demonstrates with experiments in his backyard,-with garbage cans and a disco fog machine he makes smoke rings to test his ideas about atoms. Captivated by the imaginative power of his theories and his resolutely DIY attitude, Wertheim has been following Carter's progress for the past decade. Centuries ago, natural philosophers puzzled out the laws of nature using the tools of observation and experimentation. Today, theoretical physics has become mathematically inscrutable, accessible only to an elite few. In rejecting this abstraction, outsider theorists insist that nature speaks a language we can all understand. Through a profoundly human profile of Jim Carter, Wertheim's exploration of the bizarre world of fringe physics challenges our conception of what science is, how it works, and who it is for.
In this second edition of Interferometry and Synthesis in Radio Astronomy, three leading figures in the development of large imaging arrays, including very-long-baseline interferometry (VLBI), describe and explain the technology that provides images of the universe with an angular resolution as fine as 1/20,000 of an arcsecond. This comprehensive volume begins with a historical review followed by detailed coverage of the theory of interferometry and synthesis imaging, analysis of interferometer response, geometrical relationships, polarimetry, antennas, and arrays. Discussion of the receiving system continues with analysis of the response to signals and noise, analog design requirements, and digital signal processing. The authors detail special requirements of VLBI including atomic frequency standards, broadband recording systems, and antennas in orbit. Further major topics include: Calibration of data and synthesis of images Image enhancement using nonlinear algorithms Techniques for astrometry and geodesy Propagation in the neutral atmosphere and ionized media Radio interference Related techniques: intensity interferometry, moon occultations, antenna holography, and optical interferometry ”This edition meets current demands by providing a comprehensive account of the techniques used today.“ (La Doc STI) [...] The up-to-date edition of Thompson [...] with its exhaustive bibliography, becomes the indispensable source of background for those already in, or considering, radio astronomy.“ (The Observatory)
This book is open access under a CC BY-NC 4.0 license. The third edition of this indispensable book in radio interferometry provides extensive updates to the second edition, including results and technical advances from the past decade; discussion of arrays that now span the full range of the radio part of the electromagnetic spectrum observable from the ground, 10 MHz to 1 THz; an analysis of factors that affect array speed; and an expanded discussion of digital signal-processing techniques and of scintillation phenomena and the effects of atmospheric water vapor on image distortion, among many other topics. With its comprehensiveness and detailed exposition of all aspects of the theory and practice of radio interferometry and synthesis imaging, this book has established itself as a standard reference in the field. It begins with an overview of the basic principles of radio astronomy, a short history of the development of radio interferometry, and an elementary discussion of the operation of an interferometer. From this foundation, it delves into the underlying relationships of interferometry, sets forth the coordinate systems and parameters to describe synthesis imaging, and examines configurations of antennas for multielement synthesis arrays. Various aspects of the design and response of receiving systems are discussed, as well as the special requirements of very-long-baseline interferometry (VLBI), image reconstruction, and recent developments in image enhancement techniques and astrometric observations. Also discussed are propagation effects in the media between the source and the observer, and radio interference, factors that limit performance. Related techniques are introduced, including intensity interferometry, optical interferometry, lunar occultations, tracking of satellites in Earth orbit, interferometry for remote Earth sensing, and holographic measurements of antenna surfaces. This book will benefit anyone who is interested in radio interferometry techniques for astronomy, astrometry, geodesy, or electrical engineering.
The present set of chapters by members of the staff of the National Radio Astronomy Observatory deals with the basic fields of research concerned with radio astronomy outside the solar system. The emphasis in this volume is on the type of data available and its interpretation. Basic theory is considered only where absolutely necessary, and little discussion of receivers or techniques is entered into in most of the chapters. The book is intended to take over where most textbooks on radio astronomy leave off, that is, in the discussion of what is actually known from the research done. In addition there is a chapter on the technical aspects of inter ferometry and aperture synthesis, since so much of modern radio astronomy depends, and will depend in an ever increasing manner, on such tools. The editors want to stress that the chapters were not necessarily expected to be compre hensive reviews of any of the fields being covered, but rather, overall outlines which the in dividual authors feIt would be suitable for graduate students and interested workers in other fields. As a result, the lists of references are not complete. This only refiects the preferences of the individual authors and not the relative merit of those references incIuded or omitted.
In recent years aperture synthesis and interferometry have become very powerful tools in radioastronomy. Investigation of distant galaxies, for example, have revealed structures with sizes of less than a kiloparsec. In general, the study of galaxies has benefited from the great power of these techniques. Radar applications have also dramatically increased their quality by using the interferometry principle. Tracking and airborne radar can now determine position and velocity of objects with a much higher accuracy. This book describes in the first six, short chapters the basics of interferometry and aperture synthesis. The following two, long chapters treat the aspects of radioastronomical interferometers and radar applications of interferometry in great detail. The text offers readers a very good opportunity to familiarize themselves with the mathematical background of these very complex techniques. For researchers and students in radioastronomy and electrical engineering.
This is the story of Bernie Mills, Chris Christiansen, Paul Wild and Ron Bracewell, members of a team of radio astronomers that would lead Australia, and the world, into this new field of research. Each of the four is remembered for his remarkable work: Mills for the development the cross type instrument that now bears his name; Christiansen for the application of rotational synthesis techniques; Wild for the masterful joining of observations and theory to elicit the nature of the solar atmosphere; Bracewell for his contribution to imaging theory. As well, these Four Pillars are remembered for creating a remarkable environment for scientific discovery and for influencing the careers of future generations. Their pursuit of basic science helped pave the way for technological developments in areas ranging from Wi-Fi to sonar to medical imaging to air navigation, and for underpinning the foundations of modern cosmology and astrophysics.