Quantum-Mechanical Signal Processing and Spectral Analysis

Quantum-Mechanical Signal Processing and Spectral Analysis

Author: Dzevad Belkic

Publisher: CRC Press

Published: 2019-08-22

Total Pages: 486

ISBN-13: 9781420033601

DOWNLOAD EBOOK

Quantum-Mechanical Signal Processing and Spectral Analysis describes the novel application of quantum mechanical methods to signal processing across a range of interdisciplinary research fields. Conventionally, signal processing is viewed as an engineering discipline with its own specific scope, methods, concerns and priorities, not usually encompassing quantum mechanics. However, the dynamics of systems that generate time signals can be successfully described by the general principles and methods of quantum physics, especially within the Schroedinger framework. Most time signals that are measured experimentally are mathematically equivalent to quantum-mechanical auto-correlation functions built from the evolution operator and wavefunctions. This fact allows us to apply the rich conceptual strategies and mathematical apparatus of quantum mechanics to signal processing. Among the leading quantum-mechanical signal processing methods, this book emphasizes the role of Pade approximant and the Lanczos algorithm, highlighting the major benefits of their combination. These two methods are carefully incorporated within a unified framework of scattering and spectroscopy, developing an algorithmic power that can be exported to other disciplines. The novelty of the author's approach to key signal processing problems, the harmonic inversion and the moment problem, is in establishing the Pade approximant and Lanczos algorithm as entirely algerbraic spectral estimators. This is of paramount theoretical and practical importance, as now spectral analysis can be carried out from closed analytical expressions. This overrides the notorious mathematical ill-conditioning problems with round-off errors that plague inverse reconstructions in those fields that rely upon signal processing. Quantum-Mechanical Signal Processing and Spectral Analysis will be an invaluable resource for researchers involved in signal processing across a wide range of disciplines.


Quantum-Mechanical Signal Processing and Spectral Analysis

Quantum-Mechanical Signal Processing and Spectral Analysis

Author: Dzevad Belkic

Publisher: CRC Press

Published: 2019-08-22

Total Pages: 450

ISBN-13: 1420033603

DOWNLOAD EBOOK

Quantum-Mechanical Signal Processing and Spectral Analysis describes the novel application of quantum mechanical methods to signal processing across a range of interdisciplinary research fields. Conventionally, signal processing is viewed as an engineering discipline with its own specific scope, methods, concerns and priorities, not usually encompassing quantum mechanics. However, the dynamics of systems that generate time signals can be successfully described by the general principles and methods of quantum physics, especially within the Schroedinger framework. Most time signals that are measured experimentally are mathematically equivalent to quantum-mechanical auto-correlation functions built from the evolution operator and wavefunctions. This fact allows us to apply the rich conceptual strategies and mathematical apparatus of quantum mechanics to signal processing. Among the leading quantum-mechanical signal processing methods, this book emphasizes the role of Pade approximant and the Lanczos algorithm, highlighting the major benefits of their combination. These two methods are carefully incorporated within a unified framework of scattering and spectroscopy, developing an algorithmic power that can be exported to other disciplines. The novelty of the author's approach to key signal processing problems, the harmonic inversion and the moment problem, is in establishing the Pade approximant and Lanczos algorithm as entirely algerbraic spectral estimators. This is of paramount theoretical and practical importance, as now spectral analysis can be carried out from closed analytical expressions. This overrides the notorious mathematical ill-conditioning problems with round-off errors that plague inverse reconstructions in those fields that rely upon signal processing. Quantum-Mechanical Signal Processing and Spectral Analysis will be an invaluable resource for researchers involved in signal processing across a wide range of disciplines.


Signal Processing in Magnetic Resonance Spectroscopy with Biomedical Applications

Signal Processing in Magnetic Resonance Spectroscopy with Biomedical Applications

Author: Dzevad Belkic

Publisher: CRC Press

Published: 2010-01-29

Total Pages: 468

ISBN-13: 1439806454

DOWNLOAD EBOOK

Uses the FPT to Solve the Quantification Problem in MRSAn invaluable tool in non-invasive clinical oncology diagnosticsAddressing the critical need in clinical oncology for robust and stable signal processing in magnetic resonance spectroscopy (MRS), Signal Processing in Magnetic Resonance Spectroscopy with Biomedical Applications explores cutting-


Comprehensive Biomedical Physics

Comprehensive Biomedical Physics

Author:

Publisher: Newnes

Published: 2014-07-25

Total Pages: 4052

ISBN-13: 0444536337

DOWNLOAD EBOOK

Comprehensive Biomedical Physics, Ten Volume Set is a new reference work that provides the first point of entry to the literature for all scientists interested in biomedical physics. It is of particularly use for graduate and postgraduate students in the areas of medical biophysics. This Work is indispensable to all serious readers in this interdisciplinary area where physics is applied in medicine and biology. Written by leading scientists who have evaluated and summarized the most important methods, principles, technologies and data within the field, Comprehensive Biomedical Physics is a vital addition to the reference libraries of those working within the areas of medical imaging, radiation sources, detectors, biology, safety and therapy, physiology, and pharmacology as well as in the treatment of different clinical conditions and bioinformatics. This Work will be valuable to students working in all aspect of medical biophysics, including medical imaging and biomedical radiation science and therapy, physiology, pharmacology and treatment of clinical conditions and bioinformatics. The most comprehensive work on biomedical physics ever published Covers one of the fastest growing areas in the physical sciences, including interdisciplinary areas ranging from advanced nuclear physics and quantum mechanics through mathematics to molecular biology and medicine Contains 1800 illustrations, all in full color


Advances in Quantum Chemistry

Advances in Quantum Chemistry

Author: Erkki J. Brändas

Publisher: Academic Press

Published: 2011-07-08

Total Pages: 401

ISBN-13: 012386013X

DOWNLOAD EBOOK

Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This series provides a one-stop resource for following progress in this interdisciplinary area. Publishes articles, invited reviews and proceedings of major international conferences and workshops Written by leading international researchers in quantum and theoretical chemistry Highlights important interdisciplinary developments


Advances in Quantum Chemistry

Advances in Quantum Chemistry

Author: John R. Sabin

Publisher: Elsevier

Published: 2006-12-27

Total Pages: 333

ISBN-13: 0080467393

DOWNLOAD EBOOK

Advances in Quantum Chemistry presents surveys of current developments in this rapidly developing field that falls between the historically established areas of mathematics, physics, chemistry, and biology. With invited reviews written by leading international researchers, each presenting new results, it provides a single vehicle for following progress in this interdisciplinary area. Advances in Quantum Chemistry, Volume 51 deals with various aspects of mathematical versus chemical applications. Some parts belong to established scientific domains, where technical progress has been crucial for the development of modern quantum chemistry as well as the quantification problem in spectral resonance analysis. The first chapter in the volume, concerns the calculation of molecular electronic structure to high accuracy, using a variety of one and two-body schemes in the coupled cluster family of methods. Chapter 2 is devoted to Angular Momentum Diagrams. In chapters 3 and 4, the autors portray Chemical Graph Theory (CGT). Advances quantum mechanical signal processing through the fast Padé transform (FPT) are covered in Chapter 5. The concluding chapter gives a mathematical view of molecular equilibria using a Density-Functional Theory (DFT) description. - Publishes articles, invited reviews and proceedings of major international conferences and workshops - Compiled by the leading international researchers in quantum and theoretical chemistry - Highlights the important, interdisciplinary developments


Radiation Damage in Biomolecular Systems

Radiation Damage in Biomolecular Systems

Author: Gustavo García Gómez-Tejedor

Publisher: Springer Science & Business Media

Published: 2012-01-04

Total Pages: 508

ISBN-13: 9400725647

DOWNLOAD EBOOK

Since the discovery of X-rays and radioactivity, ionizing radiations have been widely applied in medicine both for diagnostic and therapeutic purposes. The risks associated with radiation exposure and handling led to the parallel development of the field of radiation protection. Pioneering experiments done by Sanche and co-workers in 2000 showed that low-energy secondary electrons, which are abundantly generated along radiation tracks, are primarily responsible for radiation damage through successive interactions with the molecular constituents of the medium. Apart from ionizing processes, which are usually related to radiation damage, below the ionization level low-energy electrons can induce molecular fragmentation via dissociative processes such as internal excitation and electron attachment. This prompted collaborative projects between different research groups from European countries together with other specialists from Canada, the USA and Australia. This book summarizes the advances achieved by these research groups after more than ten years of studies on radiation damage in biomolecular systems. An extensive Part I deals with recent experimental and theoretical findings on radiation induced damage at the molecular level. It includes many contributions on electron and positron collisions with biologically relevant molecules. X-ray and ion interactions are also covered. Part II addresses different approaches to radiation damage modelling. In Part III biomedical aspects of radiation effects are treated on different scales. After the physics-oriented focus of the previous parts, there is a gradual transition to biology and medicine with the increasing size of the object studied. Finally, Part IV is dedicated to current trends and novel techniques in radiation reserach and the applications hence arising. It includes new developments in radiotherapy and related cancer therapies, as well as technical optimizations of accelerators and totally new equipment designs, giving a glimpse of the near future of radiation-based medical treatments.


Quantum Theory of High-Energy Ion-Atom Collisions

Quantum Theory of High-Energy Ion-Atom Collisions

Author: Dzevad Belkic

Publisher: CRC Press

Published: 2008-11-13

Total Pages: 432

ISBN-13: 9781584887294

DOWNLOAD EBOOK

One of the Top Selling Physics Books according to YBP Library Services Suitable for graduate students, experienced researchers, and experts, this book provides a state-of-the-art review of the non-relativistic theory of high-energy ion-atom collisions. Special attention is paid to four-body interactive dynamics through the most important theoretical methods available to date by critically analyzing their foundation and practical usefulness relative to virtually all the relevant experimental data. Fast ion-atom collisions are of paramount importance in many high-priority branches of science and technology, including accelerator-based physics, the search for new sources of energy, controlled thermonuclear fusion, plasma research, the earth’s environment, space research, particle transport physics, therapy of cancer patients by heavy ions, and more. These interdisciplinary fields are in need of knowledge about many cross sections and collisional rates for the analyzed fast ion-atom collisions, such as single ionization, excitation, charge exchange, and various combinations thereof. These include two-electron transitions, such as double ionization, excitation, or capture, as well as simultaneous electron transfer and ionization or excitation and the like—all of which are analyzed in depth in this book. Quantum Theory of High-Energy Ion-Atom Collisions focuses on multifaceted mechanisms of collisional phenomena with heavy ions and atoms at non-relativistic high energies.


Advances in Quantum Chemistry

Advances in Quantum Chemistry

Author:

Publisher: Academic Press

Published: 2011-08

Total Pages: 369

ISBN-13: 0123864771

DOWNLOAD EBOOK

Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This series provides a one-stop resource for following progress in this interdisciplinary area. Publishes articles, invited reviews and proceedings of major international conferences and workshops Written by leading international researchers in quantum and theoretical chemistry Highlights important interdisciplinary developments


Advances in Quantum Chemistry: Lowdin Volume

Advances in Quantum Chemistry: Lowdin Volume

Author:

Publisher: Academic Press

Published: 2017-02-12

Total Pages: 408

ISBN-13: 0128104007

DOWNLOAD EBOOK

Advances in Quantum Chemistry: Lowdin Volume presents a series of articles exploring aspects of the application of quantum mechanics to atoms, molecules, and solids. - Celebrates Per-Olov Lowdin, who would have been 100 in 2016 - Contains papers by many who use his ideas in theoretical chemistry and physics today