Probability, Random Variables, and Data Analytics with Engineering Applications

Probability, Random Variables, and Data Analytics with Engineering Applications

Author: P. Mohana Shankar

Publisher: Springer Nature

Published: 2021-02-08

Total Pages: 481

ISBN-13: 303056259X

DOWNLOAD EBOOK

This book bridges the gap between theory and applications that currently exist in undergraduate engineering probability textbooks. It offers examples and exercises using data (sets) in addition to traditional analytical and conceptual ones. Conceptual topics such as one and two random variables, transformations, etc. are presented with a focus on applications. Data analytics related portions of the book offer detailed coverage of receiver operating characteristics curves, parametric and nonparametric hypothesis testing, bootstrapping, performance analysis of machine vision and clinical diagnostic systems, and so on. With Excel spreadsheets of data provided, the book offers a balanced mix of traditional topics and data analytics expanding the scope, diversity, and applications of engineering probability. This makes the contents of the book relevant to current and future applications students are likely to encounter in their endeavors after completion of their studies. A full suite of classroom material is included. A solutions manual is available for instructors. Bridges the gap between conceptual topics and data analytics through appropriate examples and exercises; Features 100's of exercises comprising of traditional analytical ones and others based on data sets relevant to machine vision, machine learning and medical diagnostics; Intersperses analytical approaches with computational ones, providing two-level verifications of a majority of examples and exercises.


Probability, Random Variables, and Data Analytics with Engineering Applications

Probability, Random Variables, and Data Analytics with Engineering Applications

Author: P. Mohana Shankar

Publisher:

Published: 2021

Total Pages: 0

ISBN-13: 9783030562601

DOWNLOAD EBOOK

This book bridges the gap between theory and applications that currently exist in undergraduate engineering probability textbooks. It offers examples and exercises using data (sets) in addition to traditional analytical and conceptual ones. Conceptual topics such as one and two random variables, transformations, etc. are presented with a focus on applications. Data analytics related portions of the book offer detailed coverage of receiver operating characteristics curves, parametric and nonparametric hypothesis testing, bootstrapping, performance analysis of machine vision and clinical diagnostic systems, and so on. With Excel spreadsheets of data provided, the book offers a balanced mix of traditional topics and data analytics expanding the scope, diversity, and applications of engineering probability. This makes the contents of the book relevant to current and future applications students are likely to encounter in their endeavors after completion of their studies. A full suite of classroom material is included. A solutions manual is available for instructors. Bridges the gap between conceptual topics and data analytics through appropriate examples and exercises; Features 100's of exercises comprising of traditional analytical ones and others based on data sets relevant to machine vision, machine learning and medical diagnostics; Intersperses analytical approaches with computational ones, providing two-level verifications of a majority of examples and exercises.


Statistics and Probability for Engineering Applications

Statistics and Probability for Engineering Applications

Author: William DeCoursey

Publisher: Elsevier

Published: 2003-05-14

Total Pages: 417

ISBN-13: 0080489753

DOWNLOAD EBOOK

Statistics and Probability for Engineering Applications provides a complete discussion of all the major topics typically covered in a college engineering statistics course. This textbook minimizes the derivations and mathematical theory, focusing instead on the information and techniques most needed and used in engineering applications. It is filled with practical techniques directly applicable on the job. Written by an experienced industry engineer and statistics professor, this book makes learning statistical methods easier for today's student. This book can be read sequentially like a normal textbook, but it is designed to be used as a handbook, pointing the reader to the topics and sections pertinent to a particular type of statistical problem. Each new concept is clearly and briefly described, whenever possible by relating it to previous topics. Then the student is given carefully chosen examples to deepen understanding of the basic ideas and how they are applied in engineering. The examples and case studies are taken from real-world engineering problems and use real data. A number of practice problems are provided for each section, with answers in the back for selected problems. This book will appeal to engineers in the entire engineering spectrum (electronics/electrical, mechanical, chemical, and civil engineering); engineering students and students taking computer science/computer engineering graduate courses; scientists needing to use applied statistical methods; and engineering technicians and technologists. * Filled with practical techniques directly applicable on the job* Contains hundreds of solved problems and case studies, using real data sets* Avoids unnecessary theory


Statistics and Data Analysis for Financial Engineering

Statistics and Data Analysis for Financial Engineering

Author: David Ruppert

Publisher: Springer

Published: 2015-04-21

Total Pages: 736

ISBN-13: 1493926144

DOWNLOAD EBOOK

The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.


Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics

Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics

Author: Patil, Bhushan

Publisher: IGI Global

Published: 2020-10-23

Total Pages: 583

ISBN-13: 1799830543

DOWNLOAD EBOOK

Analyzing data sets has continued to be an invaluable application for numerous industries. By combining different algorithms, technologies, and systems used to extract information from data and solve complex problems, various sectors have reached new heights and have changed our world for the better. The Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics is a collection of innovative research on the methods and applications of data analytics. While highlighting topics including artificial intelligence, data security, and information systems, this book is ideally designed for researchers, data analysts, data scientists, healthcare administrators, executives, managers, engineers, IT consultants, academicians, and students interested in the potential of data application technologies.


Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling

Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling

Author: Y. Z. Ma

Publisher: Springer

Published: 2019-07-15

Total Pages: 646

ISBN-13: 3030178609

DOWNLOAD EBOOK

Earth science is becoming increasingly quantitative in the digital age. Quantification of geoscience and engineering problems underpins many of the applications of big data and artificial intelligence. This book presents quantitative geosciences in three parts. Part 1 presents data analytics using probability, statistical and machine-learning methods. Part 2 covers reservoir characterization using several geoscience disciplines: including geology, geophysics, petrophysics and geostatistics. Part 3 treats reservoir modeling, resource evaluation and uncertainty analysis using integrated geoscience, engineering and geostatistical methods. As the petroleum industry is heading towards operating oil fields digitally, a multidisciplinary skillset is a must for geoscientists who need to use data analytics to resolve inconsistencies in various sources of data, model reservoir properties, evaluate uncertainties, and quantify risk for decision making. This book intends to serve as a bridge for advancing the multidisciplinary integration for digital fields. The goal is to move beyond using quantitative methods individually to an integrated descriptive-quantitative analysis. In big data, everything tells us something, but nothing tells us everything. This book emphasizes the integrated, multidisciplinary solutions for practical problems in resource evaluation and field development.


Big Data Analytics: Systems, Algorithms, Applications

Big Data Analytics: Systems, Algorithms, Applications

Author: C.S.R. Prabhu

Publisher: Springer Nature

Published: 2019-10-14

Total Pages: 422

ISBN-13: 9811500940

DOWNLOAD EBOOK

This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.


Probability and Statistics for Data Science

Probability and Statistics for Data Science

Author: Norman Matloff

Publisher: CRC Press

Published: 2019-06-21

Total Pages: 289

ISBN-13: 0429687117

DOWNLOAD EBOOK

Probability and Statistics for Data Science: Math + R + Data covers "math stat"—distributions, expected value, estimation etc.—but takes the phrase "Data Science" in the title quite seriously: * Real datasets are used extensively. * All data analysis is supported by R coding. * Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks. * Leads the student to think critically about the "how" and "why" of statistics, and to "see the big picture." * Not "theorem/proof"-oriented, but concepts and models are stated in a mathematically precise manner. Prerequisites are calculus, some matrix algebra, and some experience in programming. Norman Matloff is a professor of computer science at the University of California, Davis, and was formerly a statistics professor there. He is on the editorial boards of the Journal of Statistical Software and The R Journal. His book Statistical Regression and Classification: From Linear Models to Machine Learning was the recipient of the Ziegel Award for the best book reviewed in Technometrics in 2017. He is a recipient of his university's Distinguished Teaching Award.


Data Analytics for Engineering and Construction Project Risk Management

Data Analytics for Engineering and Construction Project Risk Management

Author: Ivan Damnjanovic

Publisher: Springer

Published: 2019-05-23

Total Pages: 382

ISBN-13: 3030142515

DOWNLOAD EBOOK

This book provides a step-by-step guidance on how to implement analytical methods in project risk management. The text focuses on engineering design and construction projects and as such is suitable for graduate students in engineering, construction, or project management, as well as practitioners aiming to develop, improve, and/or simplify corporate project management processes. The book places emphasis on building data-driven models for additive-incremental risks, where data can be collected on project sites, assembled from queries of corporate databases, and/or generated using procedures for eliciting experts’ judgments. While the presented models are mathematically inspired, they are nothing beyond what an engineering graduate is expected to know: some algebra, a little calculus, a little statistics, and, especially, undergraduate-level understanding of the probability theory. The book is organized in three parts and fourteen chapters. In Part I the authors provide the general introduction to risk and uncertainty analysis applied to engineering construction projects. The basic formulations and the methods for risk assessment used during project planning phase are discussed in Part II, while in Part III the authors present the methods for monitoring and (re)assessment of risks during project execution.