Seismic Hazard and Risk Assessment

Seismic Hazard and Risk Assessment

Author: Radu Vacareanu

Publisher: Springer

Published: 2018-03-21

Total Pages: 529

ISBN-13: 331974724X

DOWNLOAD EBOOK

This book contains the best contributions presented during the 6th National Conference on Earthquake Engineering and the 2nd National Conference on Earthquake Engineering and Seismology - 6CNIS & 2CNISS, that took place on June 14-17, 2017 in Bucharest - Romania, at the Romanian Academy and Technical University of Civil Engineering of Bucharest. The book offers an updated overview of seismic hazard and risk assessment activities, with an emphasis on recent developments in Romania, a very challenging case study because of its peculiar intermediate-depth seismicity and evolutive code-compliant building stock. Moreover, the book collects input of renowned scientists and professionals from Germany, Greece, Italy, Japan, Netherlands, Portugal, Romania, Spain, Turkey and United Kingdom.The content of the book focuses on seismicity of Romania, geotechnical earthquake engineering, structural analysis and seismic design regulations, innovative solutions for seismic protection of building structures, seismic risk evaluation, resilience-based assessment of structures and management of emergency situations. The sub-chapters consist of the best papers of 6CNIS & 2CNISS selected by the International Advisory and Scientific Committees. The book is targeted at researchers and experts in seismic hazard and risk, evaluation and rehabilitation of buildings and structures, insurers and re-insurers, and decision makers in the field of emergency situations and recovery activities.


An Introduction to Probabilistic Seismic Hazard Analysis

An Introduction to Probabilistic Seismic Hazard Analysis

Author: J. Paul Guyer, P.E., R.A.

Publisher: Guyer Partners

Published: 2020-07-22

Total Pages: 34

ISBN-13:

DOWNLOAD EBOOK

Introductory technical guidance for civil, geotechnical and structural engineers interested in earthquake hazard analysis. Here is what is discussed: 1. OVERVIEW OF PROBABILISTIC SEISMIC HAZARD ANALYSIS (PSHA) METHODOLOGY 2. CHARACTERIZING SEISMIC SOURCES FOR PSHA 3. GROUND MOTION ATTENUATION CHARACTERIZATION FOR PSHA 4. TREATMENT OF SCIENTIFIC UNCERTAINTY IN PSHA 5. DEVELOPMENT OF SITE-SPECIFIC RESPONSE SPECTRA FROM PSHA 6. DEVELOPMENT OF ACCELEROGRAMS 7. SUMMARY OF STRENGTHS AND LIMITATIONS OF DSHA AND PSHA.


Seismic Hazard and Risk Analysis

Seismic Hazard and Risk Analysis

Author: Robin K. McGuire

Publisher:

Published: 2004

Total Pages: 248

ISBN-13:

DOWNLOAD EBOOK

This is the twenty-sixth volume in the Earthquake Engineering Research Institute's series, Connections: The EERI Oral History Series. EERI began this series to preserve the recollections of some of those who have had pioneering careers in the field of earthquake engineering.Mete Sozen (1932-2018) is the Karl H. Kettelhut Distinguished Professor Emeritus of Civil Engineering at Purdue University, Indiana, United States.Besides his academic interest in the development of design codes for concrete structures, Sozen is notable for his contributions to the official post 9/11-government studies of terrorist attacks, including the Oklahoma City bombing, and The Pentagon. Sozen also led a team that created an engineering simulation of American Airlines Flight 11 crashing into the North Tower of the World Trade Center. The computer-animated visualizations were made entirely from the simulation data. He was elected to the National Academy of Engineering in 1977 for contributions to understanding the structural design and behavior of buildings and bridges subjected to earthquake motions.Sozen received his undergraduate education at Robert College (Turkey, 1951) and his master's (1952) and doctoral degrees (1957) from the University of Illinois at Urbana-Champaign.


Observation-Informed Methodologies for Site Response Characterization in Probabilistic Seismic Hazard Analysis

Observation-Informed Methodologies for Site Response Characterization in Probabilistic Seismic Hazard Analysis

Author: Kioumars Afshari

Publisher:

Published: 2017

Total Pages: 330

ISBN-13:

DOWNLOAD EBOOK

In this dissertation, we study the effects of site response on earthquake ground motions, the uncertainty in site response, and incorporating site response in probabilistic seismic hazard analysis. We introduced a guideline for evaluation of non-ergodic (site-specific) site response using (a) observations from available recorded data at the site, (b) simulations from one-dimensional ground response analysis, or (c) a combination of both. Using non-ergodic site response is expected to be an improvement in comparison to using an ergodic model which is based on the average of a global dataset conditional on site parameters used in ground motion models. The improvement in prediction when using non-ergodic analysis results in the removal of site-to-site variability which is a part of the uncertainty in ground motion prediction. The site-to-site variability is evaluated by partitioning the residuals to different sources of variability. We illustrate application of these procedures for evaluating non-ergodic site response, and use examples to show how the reduction in site response uncertainty results in less hazard for long return periods. We utilize a dataset of recordings from vertical array sites in California in order to study the effectiveness of one-dimensional ground response analysis in predicting site response. We use the California dataset for comparing the performance of linear ground response analysis to similar studies on a dataset from vertical arrays in Japan. We use surface/downhole transfer functions and amplification of pseudo-spectral acceleration to study the site response in vertical arrays. For performing linear site response analysis for the sites, we use three alternatives for small-strain soil damping namely (a) empirical models for laboratory-based soil damping; (b) an empirical model based on shear wave velocity for estimating rock quality factor; and (c) estimating damping using the difference between the spectral decay ( ) at the surface and downhole. The site response transfer functions show a better fit for California sites in comparison to the similar results on Japan. The better fit is due to different geological conditions at California and Japan vertical array sites, as well as the difference in the quality of data for the two regions. We use pseudo-spectral acceleration residuals to study the bias and dispersion of ground response analysis predictions. The results of our study shows geotechnical models for lab-based damping provide unbiased estimates of site response for most spectral periods. In addition, the between- and within-site variability of the residuals do not show a considerable regional between California and Japan vertical arrays. In another part of this dissertation, we develop ground motion models for median and standard deviation of the significant duration of earthquake ground motions from shallow crustal earthquakes in active tectonic regions. The model predicts significant durations for 5-75%, 5-95%, and 20-80% of the normalized Arias intensity, and is developed using NGA-West2 database with M3.0-7.9 events. We select recordings based on the criteria used for developing ground motion models for amplitude parameters as well as a new methodology for excluding recordings affected by noise. The model includes an M-dependent source duration term that also depends on focal mechanism. At small M, the data suggest approximately M-independent source durations that are close to 1 sec. The increase of source durations with M is slower over the range M5 to 7.2-7.4 than for larger magnitudes. We adopt an additive path term with breaks in distance scaling at 10 and 50 km. We include site terms that increase duration for decreasing VS30 and increasing basin depth. Our aleatory variability model captures decreasing between- and within-event standard deviation terms with increasing M. We use the model for validating the duration of ground motion time series produced by simulation routines implemented on the SCEC Broadband Platform. This validation is based on comparisons of median and standard deviation of simulated durations for five California events, and their trends with magnitude and distance, with our model for duration. Some misfits are observed in the median and dispersion of durations from simulated motions and their trend with magnitude and distance. Understanding the source of these misfits can help guide future improvements in the simulation routines.