Probabilistic Inductive Logic Programming

Probabilistic Inductive Logic Programming

Author: Luc De Raedt

Publisher: Springer

Published: 2008-02-26

Total Pages: 348

ISBN-13: 354078652X

DOWNLOAD EBOOK

This book provides an introduction to probabilistic inductive logic programming. It places emphasis on the methods based on logic programming principles and covers formalisms and systems, implementations and applications, as well as theory.


Foundations of Probabilistic Logic Programming

Foundations of Probabilistic Logic Programming

Author: Fabrizio Riguzzi

Publisher: CRC Press

Published: 2023-07-07

Total Pages: 548

ISBN-13: 1000923215

DOWNLOAD EBOOK

Since its birth, the field of Probabilistic Logic Programming has seen a steady increase of activity, with many proposals for languages and algorithms for inference and learning. This book aims at providing an overview of the field with a special emphasis on languages under the Distribution Semantics, one of the most influential approaches. The book presents the main ideas for semantics, inference, and learning and highlights connections between the methods. Many examples of the book include a link to a page of the web application http://cplint.eu where the code can be run online. This 2nd edition aims at reporting the most exciting novelties in the field since the publication of the 1st edition. The semantics for hybrid programs with function symbols was placed on a sound footing. Probabilistic Answer Set Programming gained a lot of interest together with the studies on the complexity of inference. Algorithms for solving the MPE and MAP tasks are now available. Inference for hybrid programs has changed dramatically with the introduction of Weighted Model Integration. With respect to learning, the first approaches for neuro-symbolic integration have appeared together with algorithms for learning the structure for hybrid programs. Moreover, given the cost of learning PLPs, various works proposed language restrictions to speed up learning and improve its scaling.


Probabilistic Inductive Logic Programming

Probabilistic Inductive Logic Programming

Author: Luc De Raedt

Publisher: Springer Science & Business Media

Published: 2008-03-14

Total Pages: 348

ISBN-13: 3540786511

DOWNLOAD EBOOK

The question, how to combine probability and logic with learning, is getting an increased attention in several disciplines such as knowledge representation, reasoning about uncertainty, data mining, and machine learning simulateously. This results in the newly emerging subfield known under the names of statistical relational learning and probabilistic inductive logic programming. This book provides an introduction to the field with an emphasis on the methods based on logic programming principles. It is concerned with formalisms and systems, implementations and applications, as well as with the theory of probabilistic inductive logic programming. The 13 chapters of this state-of-the-art survey start with an introduction to probabilistic inductive logic programming; moreover the book presents a detailed overview of the most important probabilistic logic learning formalisms and systems such as relational sequence learning techniques, using kernels with logical representations, Markov logic, the PRISM system, CLP(BN), Bayesian logic programs, and the independent choice logic. The third part provides a detailed account of some show-case applications of probabilistic inductive logic programming. The final part touches upon some theoretical investigations and includes chapters on behavioural comparison of probabilistic logic programming representations and a model-theoretic expressivity analysis.


An Introduction to Lifted Probabilistic Inference

An Introduction to Lifted Probabilistic Inference

Author: Guy Van den Broeck

Publisher: MIT Press

Published: 2021-08-17

Total Pages: 455

ISBN-13: 0262542595

DOWNLOAD EBOOK

Recent advances in the area of lifted inference, which exploits the structure inherent in relational probabilistic models. Statistical relational AI (StaRAI) studies the integration of reasoning under uncertainty with reasoning about individuals and relations. The representations used are often called relational probabilistic models. Lifted inference is about how to exploit the structure inherent in relational probabilistic models, either in the way they are expressed or by extracting structure from observations. This book covers recent significant advances in the area of lifted inference, providing a unifying introduction to this very active field. After providing necessary background on probabilistic graphical models, relational probabilistic models, and learning inside these models, the book turns to lifted inference, first covering exact inference and then approximate inference. In addition, the book considers the theory of liftability and acting in relational domains, which allows the connection of learning and reasoning in relational domains.


Encyclopedia of Machine Learning

Encyclopedia of Machine Learning

Author: Claude Sammut

Publisher: Springer Science & Business Media

Published: 2011-03-28

Total Pages: 1061

ISBN-13: 0387307680

DOWNLOAD EBOOK

This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.


Markov Logic

Markov Logic

Author: Pedro Dechter

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 145

ISBN-13: 3031015495

DOWNLOAD EBOOK

Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. Table of Contents: Introduction / Markov Logic / Inference / Learning / Extensions / Applications / Conclusion


Foundations of Probabilistic Programming

Foundations of Probabilistic Programming

Author: Gilles Barthe

Publisher: Cambridge University Press

Published: 2020-12-03

Total Pages: 583

ISBN-13: 110848851X

DOWNLOAD EBOOK

This book provides an overview of the theoretical underpinnings of modern probabilistic programming and presents applications in e.g., machine learning, security, and approximate computing. Comprehensive survey chapters make the material accessible to graduate students and non-experts. This title is also available as Open Access on Cambridge Core.


Practical Probabilistic Programming

Practical Probabilistic Programming

Author: Avi Pfeffer

Publisher: Simon and Schuster

Published: 2016-03-29

Total Pages: 650

ISBN-13: 1638352372

DOWNLOAD EBOOK

Summary Practical Probabilistic Programming introduces the working programmer to probabilistic programming. In it, you'll learn how to use the PP paradigm to model application domains and then express those probabilistic models in code. Although PP can seem abstract, in this book you'll immediately work on practical examples, like using the Figaro language to build a spam filter and applying Bayesian and Markov networks, to diagnose computer system data problems and recover digital images. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The data you accumulate about your customers, products, and website users can help you not only to interpret your past, it can also help you predict your future! Probabilistic programming uses code to draw probabilistic inferences from data. By applying specialized algorithms, your programs assign degrees of probability to conclusions. This means you can forecast future events like sales trends, computer system failures, experimental outcomes, and many other critical concerns. About the Book Practical Probabilistic Programming introduces the working programmer to probabilistic programming. In this book, you’ll immediately work on practical examples like building a spam filter, diagnosing computer system data problems, and recovering digital images. You’ll discover probabilistic inference, where algorithms help make extended predictions about issues like social media usage. Along the way, you’ll learn to use functional-style programming for text analysis, object-oriented models to predict social phenomena like the spread of tweets, and open universe models to gauge real-life social media usage. The book also has chapters on how probabilistic models can help in decision making and modeling of dynamic systems. What's Inside Introduction to probabilistic modeling Writing probabilistic programs in Figaro Building Bayesian networks Predicting product lifecycles Decision-making algorithms About the Reader This book assumes no prior exposure to probabilistic programming. Knowledge of Scala is helpful. About the Author Avi Pfeffer is the principal developer of the Figaro language for probabilistic programming. Table of Contents PART 1 INTRODUCING PROBABILISTIC PROGRAMMING AND FIGARO Probabilistic programming in a nutshell A quick Figaro tutorial Creating a probabilistic programming application PART 2 WRITING PROBABILISTIC PROGRAMS Probabilistic models and probabilistic programs Modeling dependencies with Bayesian and Markov networks Using Scala and Figaro collections to build up models Object-oriented probabilistic modeling Modeling dynamic systems PART 3 INFERENCE The three rules of probabilistic inference Factored inference algorithms Sampling algorithms Solving other inference tasks Dynamic reasoning and parameter learning


Logical and Relational Learning

Logical and Relational Learning

Author: Luc De Raedt

Publisher: Springer Science & Business Media

Published: 2008-09-27

Total Pages: 395

ISBN-13: 3540688560

DOWNLOAD EBOOK

This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning.