Polymer Electrolytes

Polymer Electrolytes

Author: Tan Winie

Publisher: John Wiley & Sons

Published: 2020-02-18

Total Pages: 416

ISBN-13: 3527342001

DOWNLOAD EBOOK

A comprehensive overview of the main characterization techniques of polymer electrolytes and their applications in electrochemical devices Polymer Electrolytes is a comprehensive and up-to-date guide to the characterization and applications of polymer electrolytes. The authors ? noted experts on the topic ? discuss the various characterization methods, including impedance spectroscopy and thermal characterization. The authors also provide information on the myriad applications of polymer electrolytes in electrochemical devices, lithium ion batteries, supercapacitors, solar cells and electrochromic windows. Over the past three decades, researchers have been developing new polymer electrolytes and assessed their application potential in electrochemical and electrical power generation, storage, and conversion systems. As a result, many new polymer electrolytes have been found, characterized, and applied in electrochemical and electrical devices. This important book: -Reviews polymer electrolytes, a key component in electrochemical power sources, and thus benefits scientists in both academia and industry -Provides an interdisciplinary resource spanning electrochemistry, physical chemistry, and energy applications -Contains detailed and comprehensive information on characterization and applications of polymer electrolytes Written for materials scientists, physical chemists, solid state chemists, electrochemists, and chemists in industry professions, Polymer Electrolytes is an essential resource that explores the key characterization techniques of polymer electrolytes and reveals how they are applied in electrochemical devices.


Polymer Electrolyte-Based Electrochemical Devices

Polymer Electrolyte-Based Electrochemical Devices

Author: Massimiliano Lo Faro

Publisher: Elsevier

Published: 2023-09-08

Total Pages: 441

ISBN-13: 032388590X

DOWNLOAD EBOOK

Polymer Electrolyte–Based Electrochemical Devices: Advances, provides a complete overview of the theoretical and applied aspects of energy-related polymer electrolyte-based technologies. The book presents detailed thermodynamic and other basic requirements for smart materials like fuel cells, electrolyzers, batteries, sensors and devices for the abatement of pollutants. Delving into the physical-chemical, electrochemical, and mechanical properties of smart materials, it covers fundamental analysis and modeling to optimize the application of smart materials in terms of conductivity, chemical stability and kinetic properties. Detailed protocols for operation are suggested and discussed, including component development to optimize functionality, cost and upscaling. By exploring examples of actual prototypes based on recent research findings, analyzing requirements and cost estimate for large-scale production and implementation, as well as for their integration into existing systems, the environmental impact of multiple electrochemical applications is also examined. - Covers both the fundamental and technological aspects of electrochemistry - Includes discussions of prototypes, advanced materials, large scale production and the economics of smart materials - Addresses technologies for energy production, storage, environmental protection and environmental control


Biopolymer Electrolytes

Biopolymer Electrolytes

Author: Sudhakar Y N

Publisher: Elsevier

Published: 2018-06-09

Total Pages: 194

ISBN-13: 0128136111

DOWNLOAD EBOOK

Biopolymer Electrolytes: Fundamentals and Applications in Energy Storage provides the core fundamentals and applications for polyelectrolytes and their properties with a focus on biopolymer electrolytes. Increasing global energy and environmental challenges demand clean and sustainable energy sources to support the modern society. One of the feasible technologies is to use green energy and green materials in devices. Biopolymer electrolytes are one such green material and, hence, have enormous application potential in devices such as electrochemical cells and fuel cells. - Features a stable of case studies throughout the book that underscore key concepts and applications - Provides the core fundamentals and applications for polyelectrolytes and their properties - Weaves the subject of biopolymer electrolytes across a broad range of disciplines, including chemistry, chemical engineering, materials science, environmental science, and pharmaceutical science


Ceramic and Specialty Electrolytes for Energy Storage Devices

Ceramic and Specialty Electrolytes for Energy Storage Devices

Author: Prasanth Raghavan

Publisher: CRC Press

Published: 2021-04-04

Total Pages: 335

ISBN-13: 1000351807

DOWNLOAD EBOOK

Ceramic and Specialty Electrolytes for Energy Storage Devices, Volume II, investigates recent progress and challenges in a wide range of ceramic solid and quasi-solid electrolytes and specialty electrolytes for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Offers a detailed outlook on the performance requirements and ion transportation mechanism in solid polymer electrolytes • Covers solid-state electrolytes based on oxides (perovskite, anti-perovskite) and sulfide-type ion conductor electrolytes for lithium-ion batteries followed by solid-state electrolytes based on NASICON and garnet-type ionic conductors • Discusses electrolytes employed for high-temperature lithium-ion batteries, low-temperature lithium-ion batteries, and magnesium-ion batteries • Describes sodium-ion batteries, transparent electrolytes for energy storage devices, non-platinum-based cathode electrocatalyst for direct methanol fuel cells, non-platinum-based anode electrocatalyst for direct methanol fuel cells, and ionic liquid-based electrolytes for supercapacitor applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials and chemical engineers, as well as those involved in related disciplines.


Electrochemical Polymer Electrolyte Membranes

Electrochemical Polymer Electrolyte Membranes

Author: Jianhua Fang

Publisher: CRC Press

Published: 2015-04-14

Total Pages: 0

ISBN-13: 9781466581463

DOWNLOAD EBOOK

Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabrication Points out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performance Analyzes the current integration of PEMs with primary power devices and explores research trends for the next generation of PEMs Electrochemical Polymer Electrolyte Membranes provides a systematic overview of the state of the art of PEM development, making the book a beneficial resource for researchers, students, industrial professionals, and manufacturers.


Printed Batteries

Printed Batteries

Author: Senentxu Lanceros-Méndez

Publisher: John Wiley & Sons

Published: 2018-04-23

Total Pages: 270

ISBN-13: 1119287421

DOWNLOAD EBOOK

Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.


Polymer Electrolytes for Energy Storage Devices

Polymer Electrolytes for Energy Storage Devices

Author: Prasanth Raghavan

Publisher: CRC Press

Published: 2021-03-23

Total Pages: 303

ISBN-13: 1000351793

DOWNLOAD EBOOK

Polymer Electrolytes for Energy Storage Devices, Volume I, offers a detailed explanation of recent progress and challenges in polymer electrolyte research for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Discusses a variety of energy storage systems and their workings and a detailed history of LIBs • Covers a wide range of polymer-based electrolytes including PVdF, PVdF-co-HFP, PAN, blend polymeric systems, composite polymeric systems, and polymer ionic liquid gel electrolytes • Provides a comprehensive review of biopolymer electrolytes for energy storage applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials, chemical, electrical, and mechanical engineers, as well as those involved in related disciplines.


Materials for Supercapacitor Applications

Materials for Supercapacitor Applications

Author: M. Aulice Scibioh

Publisher: Elsevier

Published: 2020-01-26

Total Pages: 402

ISBN-13: 0128198591

DOWNLOAD EBOOK

Materials for Supercapacitor Applications provides a snapshot of the present status of this rapidly growing field. It covers motivations, innovations, ongoing breakthroughs in research and development, innovative materials, impacts, and perspectives, as well as the challenges and technical barriers to identifying an ideal material for practical applications. This comprehensive reference by electro-chemists explains concepts in materials selection and their unique applications based on their electro-chemical properties. Chemists, chemical and electrical engineers, material scientists, and research scholars and students interested in energy will benefit from this overview of many important reference points in understanding the materials used in supercapacitors. - Provides an overview of the formulation for new materials and how to characterize them for supercapacitor applications - Describes all the information on the available materials for supercapacitor applications - Outlines potential material characterization methods - Discusses perspectives and future directions of the field


Polymer and Ceramic Electrolytes for Energy Storage Devices, Two-Volume Set

Polymer and Ceramic Electrolytes for Energy Storage Devices, Two-Volume Set

Author: Prasanth Raghavan

Publisher: CRC Press

Published: 2021-04-08

Total Pages: 639

ISBN-13: 1000351661

DOWNLOAD EBOOK

Polymer and Ceramic Electrolytes for Energy Storage Devices features two volumes that focus on the most recent technological and scientific accomplishments in polymer, ceramic, and specialty electrolytes and their applications in lithium-ion batteries. These volumes cover the fundamentals in a logical and clear manner for students, as well as researchers from different disciplines, to follow. The set includes the following volumes: Polymer Electrolytes for Energy Storage Devices, Volume I, offers a detailed explanation of recent progress and challenges in polymer electrolyte research for energy storage devices. Ceramic and Specialty Electrolytes for Energy Storage Devices, Volume II, investigates recent progress and challenges in a wide range of ceramic solid and quasi-solid electrolytes and specialty electrolytes for energy storage devices. These volumes will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials and chemical engineers, as well as those involved in related disciplines.


Composite Electrolyte & Electrode Membranes for Electrochemical Energy Storage & Conversion Devices

Composite Electrolyte & Electrode Membranes for Electrochemical Energy Storage & Conversion Devices

Author: Giovanni Battista Appetecchi

Publisher: MDPI

Published: 2021-05-05

Total Pages: 164

ISBN-13: 3036507388

DOWNLOAD EBOOK

Electrochemical energy systems can successfully exploit beneficial characteristics of electrolyte and/or electrode membranes due to their intriguing peculiarities that make them well-established, standard components in devices such as fuel cells, electrolyzers, and flow batteries. Therefore, more and more researchers are attracted by these challenging yet important issues regarding the performance and behavior of the final device. This Special Issue of Membranes offers scientists and readers involved in these topics an appealing forum to bring and summarize the forthcoming Research & Development results, which stipulates that the composite electrolyte/electrode membranes should be tailored for lithium batteries and fuel cells. Various key aspects, such as synthesis/preparation of materials/components, investigation of the physicochemical and electrochemical properties, understanding of phenomena within the materials and electrolyte/electrode interface, and device manufacturing and performance, were presented and discussed using key research teams from internationally recognized experts in these fields.