Introduction to Plasma Physics

Introduction to Plasma Physics

Author: R.J Goldston

Publisher: CRC Press

Published: 2020-07-14

Total Pages: 514

ISBN-13: 9781439822074

DOWNLOAD EBOOK

Introduction to Plasma Physics is the standard text for an introductory lecture course on plasma physics. The text's six sections lead readers systematically and comprehensively through the fundamentals of modern plasma physics. Sections on single-particle motion, plasmas as fluids, and collisional processes in plasmas lay the groundwork for a thorough understanding of the subject. The authors take care to place the material in its historical context for a rich understanding of the ideas presented. They also emphasize the importance of medical imaging in radiotherapy, providing a logical link to more advanced works in the area. The text includes problems, tables, and illustrations as well as a thorough index and a complete list of references.


Plasma Physics

Plasma Physics

Author: Kip S. Thorne

Publisher: Princeton University Press

Published: 2021-06-15

Total Pages: 300

ISBN-13: 0691215502

DOWNLOAD EBOOK

"Kip Thorne and Roger Blandford's monumental Modern Classical Physics is now available in five stand-alone volumes that make ideal textbooks for individual graduate or advanced undergraduate courses on statistical physics; optics; elasticity and fluid dynamics; plasma physics; and relativity and cosmology. Each volume teaches the fundamental concepts, emphasizes modern, real-world applications, and gives students a physical and intuitive understanding of the subject. Relativity and Cosmology is an essential introduction to the subject, including remarkable recent advances. Written by award-winning physicists who have made fundamental contributions to the field and taught it for decades, the book differs from most others on the subject in important ways. It highlights recent transformations in our understanding of black holes, gravitational waves, and the cosmos; it emphasizes the physical interpretation of general relativity in terms of measurements made by observers; it explains the physics of the Riemann tensor in terms of tidal forces, differential frame dragging, and associated field lines; it presents an astrophysically oriented description of spinning black holes; it gives a detailed analysis of an incoming gravitational wave's interaction with a detector such as LIGO; and it provides a comprehensive, in-depth account of the universe's evolution, from its earliest moments to the present. While the book is designed to be used for a one-quarter or full-semester course, it goes deep enough to provide a foundation for understanding and participating in some areas of cutting-edge research. Includes many exercise problems Features color figures, suggestions for further reading, extensive cross-references, and a detailed index Optional "Track 2" sections make this an ideal book for a one-quarter or one-semester course An online illustration package is available to professors The five volumes, which are available individually as paperbacks and ebooks, are Statistical Physics; Optics; Elasticity and Fluid Dynamics; Plasma Physics; and Relativity and Cosmology." --


Introduction to Plasma Physics

Introduction to Plasma Physics

Author: Donald A. Gurnett

Publisher: Cambridge University Press

Published: 2017-02-20

Total Pages: 535

ISBN-13: 1107027373

DOWNLOAD EBOOK

Introducing the principles and applications of plasma physics, this new edition is ideal as an advanced undergraduate or graduate-level text.


Modern Classical Physics

Modern Classical Physics

Author: Kip S. Thorne

Publisher: Princeton University Press

Published: 2017-09-05

Total Pages: 1551

ISBN-13: 0691159025

DOWNLOAD EBOOK

A groundbreaking text and reference book on twenty-first-century classical physics and its applications This first-year graduate-level text and reference book covers the fundamental concepts and twenty-first-century applications of six major areas of classical physics that every masters- or PhD-level physicist should be exposed to, but often isn't: statistical physics, optics (waves of all sorts), elastodynamics, fluid mechanics, plasma physics, and special and general relativity and cosmology. Growing out of a full-year course that the eminent researchers Kip Thorne and Roger Blandford taught at Caltech for almost three decades, this book is designed to broaden the training of physicists. Its six main topical sections are also designed so they can be used in separate courses, and the book provides an invaluable reference for researchers. Presents all the major fields of classical physics except three prerequisites: classical mechanics, electromagnetism, and elementary thermodynamics Elucidates the interconnections between diverse fields and explains their shared concepts and tools Focuses on fundamental concepts and modern, real-world applications Takes applications from fundamental, experimental, and applied physics; astrophysics and cosmology; geophysics, oceanography, and meteorology; biophysics and chemical physics; engineering and optical science and technology; and information science and technology Emphasizes the quantum roots of classical physics and how to use quantum techniques to elucidate classical concepts or simplify classical calculations Features hundreds of color figures, some five hundred exercises, extensive cross-references, and a detailed index An online illustration package is available


Fundamentals of Plasma Physics

Fundamentals of Plasma Physics

Author: J. A. Bittencourt

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 730

ISBN-13: 148329319X

DOWNLOAD EBOOK

A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.


Introduction to Plasma Physics

Introduction to Plasma Physics

Author: Donald A. Gurnett

Publisher: Cambridge University Press

Published: 2017-02-20

Total Pages: 535

ISBN-13: 1316849023

DOWNLOAD EBOOK

Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book is ideal as an advanced undergraduate to graduate-level textbook, or as a reference for researchers.


Fundamentals of Plasma Physics

Fundamentals of Plasma Physics

Author: Paul M. Bellan

Publisher: Cambridge University Press

Published: 2008-07-31

Total Pages: 16

ISBN-13: 1139449737

DOWNLOAD EBOOK

This rigorous explanation of plasmas is relevant to diverse plasma applications such as controlled fusion, astrophysical plasmas, solar physics, magnetospheric plasmas, and plasma thrusters. More thorough than previous texts, it exploits new powerful mathematical techniques to develop deeper insights into plasma behavior. After developing the basic plasma equations from first principles, the book explores single particle motion with particular attention to adiabatic invariance. The author then examines types of plasma waves and the issue of Landau damping. Magnetohydrodynamic equilibrium and stability are tackled with emphasis on the topological concepts of magnetic helicity and self-organization. Advanced topics follow, including magnetic reconnection, nonlinear waves, and the Fokker–Planck treatment of collisions. The book concludes by discussing unconventional plasmas such as non-neutral and dusty plasmas. Written for beginning graduate students and advanced undergraduates, this text emphasizes the fundamental principles that apply across many different contexts.


Introduction to Plasma Physics and Controlled Fusion

Introduction to Plasma Physics and Controlled Fusion

Author: Francis F. Chen

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 427

ISBN-13: 1475755953

DOWNLOAD EBOOK

TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.