Physical Problems in Microelectronics
Author: J. Kassabov
Publisher: World Scientific Publishing Company
Published: 1987
Total Pages: 566
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: J. Kassabov
Publisher: World Scientific Publishing Company
Published: 1987
Total Pages: 566
ISBN-13:
DOWNLOAD EBOOKAuthor: Pradeep Lall
Publisher: CRC Press
Published: 2020-07-09
Total Pages: 332
ISBN-13: 0429605595
DOWNLOAD EBOOKThis book raises the level of understanding of thermal design criteria. It provides the design team with sufficient knowledge to help them evaluate device architecture trade-offs and the effects of operating temperatures. The author provides readers a sound scientific basis for system operation at realistic steady state temperatures without reliability penalties. Higher temperature performance than is commonly recommended is shown to be cost effective in production for life cycle costs. The microelectronic package considered in the book is assumed to consist of a semiconductor device with first-level interconnects that may be wirebonds, flip-chip, or tape automated bonds; die attach; substrate; substrate attach; case; lid; lid seal; and lead seal. The temperature effects on electrical parameters of both bipolar and MOSFET devices are discussed, and models quantifying the temperature effects on package elements are identified. Temperature-related models have been used to derive derating criteria for determining the maximum and minimum allowable temperature stresses for a given microelectronic package architecture. The first chapter outlines problems with some of the current modeling strategies. The next two chapters present microelectronic device failure mechanisms in terms of their dependence on steady state temperature, temperature cycle, temperature gradient, and rate of change of temperature at the chip and package level. Physics-of-failure based models used to characterize these failure mechanisms are identified and the variabilities in temperature dependence of each of the failure mechanisms are characterized. Chapters 4 and 5 describe the effects of temperature on the performance characteristics of MOS and bipolar devices. Chapter 6 discusses using high-temperature stress screens, including burn-in, for high-reliability applications. The burn-in conditions used by some manufacturers are examined and a physics-of-failure approach is described. The
Author: Shahrzad Salemi
Publisher: RIAC
Published: 2008
Total Pages: 271
ISBN-13: 1933904291
DOWNLOAD EBOOKAuthor: Vladislav A. Vashchenko
Publisher: Springer Science & Business Media
Published: 2008-03-22
Total Pages: 337
ISBN-13: 0387745149
DOWNLOAD EBOOKProviding an important link between the theoretical knowledge in the field of non-linier physics and practical application problems in microelectronics, the purpose of the book is popularization of the physical approach for reliability assurance. Another unique aspect of the book is the coverage given to the role of local structural defects, their mathematical description, and their impact on the reliability of the semiconductor devices.
Author: J. Greer
Publisher: Elsevier
Published: 2003-10-24
Total Pages: 264
ISBN-13: 0080537219
DOWNLOAD EBOOKThe book is designed as an introduction for engineers and researchers wishing to obtain a fundamental knowledge and a snapshot in time of the cutting edge in technology research. As a natural consequence, Nano and Giga Challenges is also an essential reference for the "gurus" wishing to keep abreast of the latest directions and challenges in microelectronic technology development and future trends. The combination of viewpoints presented within the book can help to foster further research and cross-disciplinary interaction needed to surmount the barriers facing future generations of technology design.Key Features:• Quickly becoming the hottest topic of the new millennium (2.4 billion dollars funding in US alone• Current status and future trends of micro and nanoelectronics research• Written by leading experts in the corresponding research areas• Excellent tutorial for graduate students and reference for "gurus"
Author: John M. Jerke
Publisher:
Published: 1975
Total Pages: 48
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher: Academic Press
Published: 1998-08-17
Total Pages: 477
ISBN-13: 0080864538
DOWNLOAD EBOOKSince its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. Volumes 54 and 55 present contributions by leading researchers in the field of high pressure semiconductors. Edited by T. Suski and W. Paul, these volumes continue the tradition of well-known but outdated publications such as Brigman's The Physics of High Pressure (1931 and 1949) and High Pressure Physics and Chemistry edited by Bradley. Volumes 54 and 55 reflect the industrially important recent developments in research and applications of semiconductor properties and behavior under desirable risk-free conditions at high pressures. These developments include the advent of the diamond anvil cell technique and the availability of commercial pistoncylinder apparatus operating at high hydrostatic pressures. These much-needed books will be useful to both researchers and practitioners in applied physics, materials science, and engineering.
Author: Daniel M. Fleetwood
Publisher: CRC Press
Published: 2008-11-19
Total Pages: 772
ISBN-13: 1420043773
DOWNLOAD EBOOKUncover the Defects that Compromise Performance and ReliabilityAs microelectronics features and devices become smaller and more complex, it is critical that engineers and technologists completely understand how components can be damaged during the increasingly complicated fabrication processes required to produce them.A comprehensive survey of defe
Author: Serge Luryi
Publisher: John Wiley & Sons
Published: 2007-06-22
Total Pages: 476
ISBN-13: 0470168250
DOWNLOAD EBOOKIn this book leading profesionals in the semiconductor microelectronics field discuss the future evolution of their profession. The following are some of the questions discussed: Does CMOS technology have a real problem? Do transistors have to be smaller or just better and made of better materials? What is to come after semiconductors? Superconductors or molecular conductors? Is bottom-up self-assembling the answer to the limitation of top-down lithography? Is it time for Optics to become a force in computer evolution? Quantum Computing, Spintronics? Where is the printable plastic electronics proposed 10 years ago? Are carbon nanotube transistors the CMOS of the future?