The latest developments in photochemistry on solid surfaces, i.e. photochemistry in heterogeneous systems, including liquid crystallines, are brought together for the first time in a single volume. Distinguished photochemists from various fields have contributed to the book which covers a number of important applications: molecular photo-devices for super-memory, photochemical vapor deposition to produce thin-layered electronic semiconducting materials, sensitive optical media, the control of photochemical reactions pathways, etc. Photochemistry on solid surfaces is now a major field and this book which provides an up-to-date and comprehensive overview of the subject will be of interest to a wide range of readers.
Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on spectroscopic techniques, energy transfer, desorption dynamics, and photochemistry.
This volume contains review articles written by the invited speakers at the ninth International Summer Institute in Surface Science (ISISS 1989), held at the Uni versity of Wisconsin-Milwaukee in August of 1989. During the course of ISISS, invited speakers, all internationally recognized experts in the various fields of surface science, present tutorial review lectures. In addition, these experts are asked to write review articles on their lecture topic. Former ISISS speakers serve as advisors concerning the selection of speakers and lecture topics. Emphasis is given to those areas which have not been covered in depth by recent Summer Institutes, as well as to areas which have recently gained in significance and in which important progress has been made. Because of space limitations, no individual volume of Chemistry and Physics of Solid Surfaces can possibly cover the whole area of modern surface science, or even give a complete survey of recent progress in this field. However, an attempt is made to present a balanced overview in the series as a whole. With its comprehensive literature references and extensive subject indices, this series has become a valuable resource for experts and students alike. The collected articles, which stress particularly the gas-solid interface, have been published under the following titles: Surface Science: Recent Progress and Perspectives, Crit. Rev. Solid State Sci.
"Covers adsorption isotherms for polycyclic aromatic hydrocarbons and considers ground-stable stable and associate pairs. Describes the structure of inorganic layered materials and incalation of organic guest molecules in clays. Details photocyclization reaction in cyclodextrins, single-crystalline photochromism, and reaction dynamics in crystals, and more."
Offers a comprehensive review of the research and development of mechanically responsive materials and their applications in soft robots Mechanically Responsive Materials for Soft Robotics offers an authoritative guide to the current state of mechanically responsive materials for the development of soft robotics. With contributions from an international panel of experts, the book examines existing mechanically responsive materials such as crystals, polymers, gels, and composites that are stimulated by light and heat. The book also explores the application of mechanical materials to soft robotics. The authors describe the many excellent mechanical crystals developed in recent years that show the ability to bend, twist, rotate, jump, self-heal, and shape memory. Mechanical polymer materials are described for evolution into artificial muscles, photomobile materials, bioinspired soft actuators, inorganic-organic hybrid materials, multi-responsive composite materials, and strain sensor materials. The application of mechanical materials to soft robots is just the beginning. This book reviews the many challenging and versatile applications, such as soft microrobots made from photoresponsive elastomers, four-dimensional printing for assembling soft robots, self-growing of soft robots like plants, and biohybrid robots using muscle tissue. This important book: -Explores recent developments in the use of soft smart materials in robotic systems -Covers the full scope of mechanically responsive materials: polymers, crystals, gels, and nanocomposites -Deals with an interdisciplinary topic of advanced smart materials research -Contains extensive descriptions of current and future applications in soft robotics Written for materials scientists, polymer chemists, photochemists, physical chemists, solid state chemists, inorganic chemists, and robotics engineers, Mechanically Responsive Materials for Soft Robotics offers a comprehensive and timely review of the most recent research on mechanically responsive materials and the manufacture of soft robotics.
This is the most updated, comprehensive collection of monographs on all aspects of photochemistry and photophysics related to natural and synthetic, inorganic, organic, and biological supramolecular systems. Supramolecular Photochemistry: Controlling Photochemical Processes addresses reactions in crystals, organized assemblies, monolayers, zeolites, clays, silica, micelles, polymers, dendrimers, organic hosts, supramolecular structures, organic glass, proteins and DNA, and applications of photosystems in confined media. This landmark publication describes the past, present, and future of this growing interdisciplinary area.
Aquatic and Surface Photochemistry provides a broad overview of current research in the emerging field of environmental aquatic and surface photochemistry. Selected reviews and current research articles are blended to provide an in-depth treatment of various aspects of this research area. The first part of the text deals with photochemistry in the environment, covering recent research on the following topics: aquatic photochemistry of organic pollutants and agrochemicals, photochemical cycling of carbon and transition metals (especially iron), photochemical formation of reactive oxygen species in natural waters, photoreaction in cloud and rain droplets, and photoreactions on environmental surfaces (soil, ash, metal, oxide). The second part provides discussions and data on both heterogeneous photocatalytic and homogeneous processes, with topics ranging from applications to mechanistic studies. These chapters illustrate the wide diversity of pollutant classes that are degradable by photochemical techniques and the effects of various reaction conditions on the rates and efficiency of the techniques. Current kinetic studies are presented, which provide new information about the role of adsorption and the nature of the reactive oxidizing species that mediate these photoremediation processes.This book will interest civil, chemical, and environmental engineers, as well as chemists, soil scientists, geochemists, and atmospheric chemists.
When we see a jumbo jet at the airport, we sometimes wonder how such a huge, heavy plane can fly high in the sky. To the extent that we think in a static way, it is certainly not understandable. In such a manner, dynamics yields behavior quite different from statics. When we want to prepare an iron nitride, for example, one of the most orthodox ways is to put iron in a nitrogen atmosphere under pressures higher than the dissociation pressure of the iron nitride at temperatures sufficiently high to let the nitrogen penetrate into the bulk iron. This is the way thermodynamics tells us to proceed, which requires an elaborate, expensive high-pressure apparatus, sophisticated techniques, and great efforts. However, if we flow ammonia over the iron, even under low pressures, we can easily prepare the nitride-provided the hydrogen pressure is sufficiently low. Since the nitrogen desorption rate is the determining step of the ammonia decomposition on the iron surface, the virtual pressure of nitrogen at the surface can reach an extremely high level (as is generally accepted) because, in such a dynamic system, the driving force of the ammonia decomposition reaction pushes the nitrogen into the bulk iron to form the nitride. Thus, dynamics is an approach considerably different from statics.
Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on spectroscopic techniques, energy transfer, desorption dynamics, and photochemistry.
Using lasers to induce and probe surface processes has the advantages of quantum state specificity, species selectivity, surface sensitivity, fast time-resolution, high frequency resolution, and accessibility to full pressure ranges. These advantages make it highly desirable to use light to induce, control, or monitor surface chemical and physical processes. Recent applications of laser based techniques in studying surface processes have stimulated new developments and enabled the understanding of fundamental problems in energy transfer and reactions. This volume will include discussions on spectroscopic techniques, energy transfer, desorption dynamics, and photochemistry.