Particle Kinetics and Laser-Plasma Interactions

Particle Kinetics and Laser-Plasma Interactions

Author: Vladimir Tikhonchuk

Publisher: Cambridge Scholars Publishing

Published: 2023-10-12

Total Pages: 361

ISBN-13: 1527552551

DOWNLOAD EBOOK

Laser-plasma interaction is a continuously growing field with a broad range of applications in fundamental science, industry, and medicine. This book provides a comprehensive introduction to the physics of the interaction of intense laser pulses with high-temperature plasmas motivated by applications in high-energy-density physics and inertial confinement fusion. It combines the presentation of basic elements of the kinetics of charged particles in plasma and properties of electromagnetic waves with up-to-date developments related to nonlinear laser-plasma interactions, plasma heating, particle acceleration, excitation and mitigation of parametric instabilities. The book is based on the lectures taught by the author to students at master’s and graduate levels. It provides original material combining qualitative descriptions of physical processes with a strict but accessible theoretical background and practical exercises.


Atoms, Solids, and Plasmas in Super-Intense Laser Fields

Atoms, Solids, and Plasmas in Super-Intense Laser Fields

Author: Dimitri Batani

Publisher: Springer Science & Business Media

Published: 2001-09-30

Total Pages: 434

ISBN-13: 9780306466151

DOWNLOAD EBOOK

Proceedings of the 30th Course of the International School of Quantum Electronics on Atoms, Solids and Plasmas in Super-Intense Laser Fields, held 8-14 July, in Erice, Sicily


Laser-Plasma Interactions and Applications

Laser-Plasma Interactions and Applications

Author: Paul McKenna

Publisher: Springer Science & Business Media

Published: 2013-03-29

Total Pages: 472

ISBN-13: 3319000381

DOWNLOAD EBOOK

Laser-Plasma Interactions and Applications covers the fundamental and applied aspects of high power laser-plasma physics. With an internationally renowned team of authors, the book broadens the knowledge of young researchers working in high power laser-plasma science by providing them with a thorough pedagogical grounding in the interaction of laser radiation with matter, laser-plasma accelerators, and inertial confinement fusion. The text is organised such that the theoretical foundations of the subject are discussed first, in Part I. In Part II, topics in the area of high energy density physics are covered. Parts III and IV deal with the applications to inertial confinement fusion and as a driver of particle and radiation sources, respectively. Finally, Part V describes the principle diagnostic, targetry, and computational approaches used in the field. This book is designed to give students a thorough foundation in the fundamental physics of laser-plasma interactions. It will also provide readers with knowledge of the latest research trends and elucidate future exciting challenges in laser-plasma science.


X-Rays and Extreme Ultraviolet Radiation

X-Rays and Extreme Ultraviolet Radiation

Author: David Attwood

Publisher: Cambridge University Press

Published: 2017-02-16

Total Pages:

ISBN-13: 1316810666

DOWNLOAD EBOOK

With this fully updated second edition, readers will gain a detailed understanding of the physics and applications of modern X-ray and EUV radiation sources. Taking into account the most recent improvements in capabilities, coverage is expanded to include new chapters on free electron lasers (FELs), laser high harmonic generation (HHG), X-ray and EUV optics, and nanoscale imaging; a completely revised chapter on spatial and temporal coherence; and extensive discussion of the generation and applications of femtosecond and attosecond techniques. Readers will be guided step by step through the mathematics of each topic, with over 300 figures, 50 reference tables and 600 equations enabling easy understanding of key concepts. Homework problems, a solutions manual for instructors, and links to YouTube lectures accompany the book online. This is the 'go-to' guide for graduate students, researchers and industry practitioners interested in X-ray and EUV interaction with matter.


Particle Interactions in High-Temperature Plasmas

Particle Interactions in High-Temperature Plasmas

Author: Oliver James Pike

Publisher: Springer

Published: 2017-08-17

Total Pages: 154

ISBN-13: 331963447X

DOWNLOAD EBOOK

This thesis makes two important contributions to plasma physics. The first is the extension of the seminal theoretical works of Spitzer and Braginskii, which describe the basics of particle interactions in plasma, to relativistic systems. Relativistic plasmas have long been studied in high-energy astrophysics and are becoming increasingly attainable in the laboratory. The second is the design of a new class of photon–photon collider, which is the first capable of detecting the Breit–Wheeler process. Though it offers the simplest way for light to be converted into matter, the process has never been detected in the 80 years since its theoretical prediction. The experimental scheme proposed here exploits the radiation used in inertial confinement fusion experiments and could in principle be implemented in one of several current-generation facilities.


Laser-Plasma Interactions

Laser-Plasma Interactions

Author: Dino A. Jaroszynski

Publisher: CRC Press

Published: 2009-03-27

Total Pages: 454

ISBN-13: 1584887796

DOWNLOAD EBOOK

A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap


Soft X-Rays and Extreme Ultraviolet Radiation

Soft X-Rays and Extreme Ultraviolet Radiation

Author: David Attwood

Publisher: Cambridge University Press

Published: 2007-02-22

Total Pages: 611

ISBN-13: 1139643428

DOWNLOAD EBOOK

This detailed, comprehensive book describes the fundamental properties of soft X-rays and extreme ultraviolet (EUV) radiation and discusses their applications in a wide variety of fields, including EUV lithography for semiconductor chip manufacture and soft X-ray biomicroscopy. The author begins by presenting the relevant basic principles such as radiation and scattering, wave propagation, diffraction, and coherence. He then goes on to examine a broad range of phenomena and applications. The topics covered include spectromicroscopy, EUV astronomy, synchrotron radiation, and soft X-ray lasers. The author also provides a wealth of useful reference material such as electron binding energies, characteristic emission lines and photo-absorption cross-sections. The book will be of great interest to graduate students and researchers in engineering, physics, chemistry, and the life sciences. It will also appeal to practising engineers involved in semiconductor fabrication and materials science.