This volume presents a unique comparative treatment of the role oxidative stress plays in vertebrates and invertebrates in multiple organ systems with regards to cell death, development, aging, and human diseases, and anti-oxidant therapy. It offers comprehensive reviews of the current understanding of oxidative stress-mediated physiology and pathology as well as directions for future research. It also provides current information on the role of oxidative stress in neurodegenerative diseases, cardiovascular diseases, and various types of cancer mediated by oxidative stress.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Reactive oxygen species (ROS) are increasingly appreciated as down-stream effectors of cellular damage and dysfunction under natural and anthropogenic stress scenarios in aquatic systems. This comprehensive volume describes oxidative stress phenomena in different climatic zones and groups of organisms, taking into account specific habitat conditions and how they affect susceptibility to ROS damage. A comprehensive and detailed methods section is included which supplies complete protocols for analyzing ROS production, oxidative damage, and antioxidant systems. Methods are also evaluated with respect to applicability and constraints for different types of research. The authors are all internationally recognized experts in particular fields of oxidative stress research. This comprehensive reference volume is essential for students, researchers, and technicians in the field of ROS research, and also contains information useful for veterinarians, environmental health professionals, and decision makers.
This volume presents a unique comparative treatment of the role oxidative stress plays in vertebrates and invertebrates in multiple organ systems with regards to cell death, development, aging, and human diseases, and anti-oxidant therapy. It offers comprehensive reviews of the current understanding of oxidative stress-mediated physiology and pathology as well as directions for future research. It also provides current information on the role of oxidative stress in neurodegenerative diseases, cardiovascular diseases, and various types of cancer mediated by oxidative stress.
This volume provides a comprehensive treatment of the latest research on oxidative stress and antioxidant defenses in all types of aerobic organisms. This book investigates oxidative stress in prokaryotes, protists, plants, fungi, vertebrates, and invertebrates, stimulating cross-fertilization among diverse fields. In addition, it explains the basic science of oxygen activation and oxidative stress as a foundation for more advanced material, making this book useful as a resource for both specialists and non-specialists.
This book discusses oxidative stress and hormesis from the perspective of an evolutionary ecologist or physiologist. In the first of ten chapters, general historical information, definitions, and background of research on oxidative stress physiology, hormesis, and life history are provided. Chapters 2-10 highlight the different solutions that organisms have evolved to cope with the oxidative threats posed by their environments and lifestyles. The author illustrates how oxidative stress and hormesis have shaped diversity in organism life-histories, behavioral profiles, morphological phenotypes, and aging mechanisms. The book offers fascinating insights into how organisms work and how they evolve to sustain their physiological functions under a vast array of environmental conditions.
The existing theories on the evolution of senescence assume that senescence is inevitable in all organisms. However, recent studies have shown that this is not necessarily true. A better understanding of senescence and its underlying mechanisms could have far-reaching consequences for conservation and eco-evolutionary research. This book is the first to offer interdisciplinary perspectives on the evolution of senescence in many species, setting the stage for further developments. It brings together new insights from a wide range of scientific fields and cutting-edge research done on a multitude of different animals (including humans), plants and microbes, giving the reader a complete overview of recent developments and of the controversies currently surrounding the topic. Written by specialists from a variety of disciplines, this book is a valuable source of information for students and researchers interested in ageing and life history traits and populations.
Mitochondria are sometimes called the powerhouses of eukaryotic cells, because mitochondria are the site of ATP synthesis in the cell. ATP is the universal energy currency, it provides the power that runs all other life processes. Humans need oxygen to survive because of ATP synthesis in mitochondria. The sugars from our diet are converted to carbon dioxide in mitochondria in a process that requires oxygen. Just like a fire needs oxygen to burn, our mitochondria need oxygen to make ATP. From textbooks and popular literature one can easily get the impression that all mitochondria require oxygen. But that is not the case. There are many groups of organismsm known that make ATP in mitochondria without the help of oxygen. They have preserved biochemical relicts from the early evolution of eukaryotic cells, which took place during times in Earth history when there was hardly any oxygen avaiable, certainly not enough to breathe. How the anaerobic forms of mitochondria work, in which organisms they occur, and how the eukaryotic anaerobes that possess them fit into the larger picture of rising atmospheric oxygen during Earth history are the topic of this book.
Oxidative stress is a major contributor to the etiology of chronic disorders like cancer, diabetes, neurodegenerative diseases, and cardiovascular diseases. Long-term exposure to elevated levels of pro-oxidant substances can lead to structural damage in mitochondrial DNA as well as functional changes in a number of enzymes and cellular components, which can lead to abnormalities in gene expression. Modern lifestyles, which include eating processed food, exposure to a variety of chemicals, and not exercising, are significant factors in the development of oxidative stress. However, the ability of medicinal plants with antioxidant capabilities to cure or prevent a number of human illnesses in which oxidative stress appears to be a contributing factor has been demonstrated. A growing body of research links free radicals to the etiology of many diseases, supporting the use of antioxidants as a promising therapeutic strategy for the management of pathologies caused by free radicals. Despite these remarkable advances, there is still much to learn about the relationship between free radicals and antioxidants. Understanding the principles behind pathological and physiological disorders caused by free radicals is crucial. Importance of Oxidative Stress and Antioxidant System in Health and Disease contributes to understanding the fundamental principles of oxidative stress and the effects of antioxidants on disease and health.