This work examines all aspects of organic conductors, detailing recent theoretical concepts and current laboratory methods of synthesis, measurement, control and analysis. It describes advances in molecular-scale engineering, including switching and memory systems, Schottky and electroluminescent diodes, field-effect transistors, and photovoltaic devices and solar cells.
This book is a review of physical properties of organic conductors and superconductors. It is amply illustrated and contains numerous data concerning the latest elements and equipment constructed of low-dimensional organic conductors. It is hoped that the book will be stimulating for technologists and designers working on contemporary electronics.
This book provides an easily understandable introduction to solid state physics for chemists and engineers. Band theory is introduced as an extension of molecular orbital theory, and its application to organic materials is described. Phenomena beyond band theory are treated in relation to magnetism and electron correlation, which are explained in terms of the valence bond theory and the Coulomb and exchange integrals. After the fundamental concepts of magnetism are outlined, the relation of correlation and superconductivity is described without assuming a knowledge of advanced physics. Molecular design of organic conductors and semiconductors is discussed from the standpoint of oxidation-reduction potentials, and after a brief survey of organic superconductors, various applications of organic semiconductor devices are described. This book will be useful not only for researchers but also for graduate students as a valuable reference.
The book covers different aspects of the chemistry and physics of molecular materials, including organic synthesis of specific organic donors and ligands, organic metals and superconductors, molecule-based magnets, multiproperty materials and organic-inorganic hybrids. The 17 chapters are written by some of the most authoritative authors in their field. The two last chapters are devoted to molecular electronics and devices, in particular the achievements and potential for applications. An excellent work for all students and researchers in organic conductors, superconductors and molecule based magnets.
This thesis experimentally demonstrates the much discussed electronic charge-glass states in solids. It focuses on quasi-two-dimensional organic conductors of the θ-(BEDT-TTF)2X family, which form anisotropic triangular lattices, and examines their electronic properties using various measurements: resistivity, time-resolved electric transport, X-ray diffraction analysis, and nuclear magnetic resonance spectroscopy. The hallmark of the charge glass caused by geometrical frustration of lattice structure for those materials is successfully observed for the first time. The thesis provides new insights into the exotic properties of matter driven by strong electron correlations and crystalline frustration. The introduction enables beginners to understand fundamentals of the charge-glass states and the organic-conductor family θ-(BEDT-TTF)2X. The comprehensive and detailed descriptions of the experimental demonstration make this a valuable resource.
The initial impetus for the search for an organic superconductor was the proposal of the existence of a polymer superconductor with a high critical temperature (Tc). This spurred on activities having the aim of synthesizing and characterizing organic conductors, which had already been going on for two decades. These efforts have resulted in the thriving field of low dimensional conductors and superconductors. This monograph is intended to be an introduction to and review of the study of organic conductors and superconductors. The investigations are to warrant a treatise of some length. At the same time sufficiently rich they have produced a few active subfields, each containing exciting topics. This situation seems to necessitate a monograph describing the current status of the field for both researchers and newcomers to the field. Such a need may also be felt by scientists engaged in the study of the high-Tc oxide superconductors for comparison of the two kinds of new supercon ductors, which share some important aspects, for example, the low-dimen sionality and the competition or coexistence of superconductivity and magnetism. However, available experimental and theoretical results are sometimes conflicting and have not yet been arranged into a coherent standard picture of the whole field. Further developments are continually being reported and therefore it is still premature to write a textbook about some of the topics. However, we have tried to include discussions of recent topics in this volume.
This work examines all aspects of organic conductors, detailing recent theoretical concepts and current laboratory methods of synthesis, measurement, control and analysis. It describes advances in molecular-scale engineering, including switching and memory systems, Schottky and electroluminescent diodes, field-effect transistors, and photovoltaic devices and solar cells.
Organic Superconductors is an introduction to organic conductors and superconductors and a review of the current status of the field. First, organic conductors are described, then the structures and electronic properties of organic superconductors are discussed, illustrated with examples of typical compounds. The book deals in detail with theories of the mechanism of superconductivity, and more briefly with spin-density waves. The design, principle, and synthesis of organic superconductors are also described. This second edition covers the research activities of the last few years.