Ordered Data Analysis, Modeling and Health Research Methods

Ordered Data Analysis, Modeling and Health Research Methods

Author: Pankaj Choudhary

Publisher: Springer

Published: 2015-12-14

Total Pages: 268

ISBN-13: 3319254332

DOWNLOAD EBOOK

This volume presents an eclectic mix of original research articles in areas covering the analysis of ordered data, stochastic modeling and biostatistics. These areas were featured in a conference held at the University of Texas at Dallas from March 7 to 9, 2014 in honor of Professor H. N. Nagaraja’s 60th birthday and his distinguished contributions to statistics. The articles were written by leading experts who were invited to contribute to the volume from among the conference participants. The volume is intended for all researchers with an interest in order statistics, distribution theory, analysis of censored data, stochastic modeling, time series analysis, and statistical methods for the health sciences, including statistical genetics.


Statistical Modeling for Degradation Data

Statistical Modeling for Degradation Data

Author: Ding-Geng (Din) Chen

Publisher: Springer

Published: 2017-08-31

Total Pages: 382

ISBN-13: 9811051941

DOWNLOAD EBOOK

This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.


Majorization and the Lorenz Order with Applications in Applied Mathematics and Economics

Majorization and the Lorenz Order with Applications in Applied Mathematics and Economics

Author: Barry C. Arnold

Publisher: Springer

Published: 2018-07-27

Total Pages: 283

ISBN-13: 3319937731

DOWNLOAD EBOOK

This book was written to serve as a graduate-level textbook for special topics classes in mathematics, statistics, and economics, to introduce these topics to other researchers, and for use in short courses. It is an introduction to the theory of majorization and related notions, and contains detailed material on economic applications of majorization and the Lorenz order, investigating the theoretical aspects of these two interrelated orderings. Revising and expanding on an earlier monograph, Majorization and the Lorenz Order: A Brief Introduction, the authors provide a straightforward development and explanation of majorization concepts, addressing historical development of the topics, and providing up-to-date coverage of families of Lorenz curves. The exposition of multivariate Lorenz orderings sets it apart from existing treatments of these topics. Mathematicians, theoretical statisticians, economists, and other social scientists who already recognize the utility of the Lorenz order in income inequality contexts and arenas will find the book useful for its sound development of relevant concepts rigorously linked to both the majorization literature and the even more extensive body of research on economic applications. Barry C. Arnold, PhD, is Distinguished Professor in the Statistics Department at the University of California, Riverside. He is a Fellow of the American Statistical Society, the American Association for the Advancement of Science, and the Institute of Mathematical Statistics, and is an elected member of the International Statistical Institute. He is the author of more than two hundred publications and eight books. José María Sarabia, PhD, is Professor of Statistics and Quantitative Methods in Business and Economics in the Department of Economics at the University of Cantabria, Spain. He is author of more than one hundred and fifty publications and ten books and is an associate editor of several journals including TEST, Communications in Statistics, and Journal of Statistical Distributions and Applications.


Springer Handbook of Engineering Statistics

Springer Handbook of Engineering Statistics

Author: Hoang Pham

Publisher: Springer Nature

Published: 2023-04-20

Total Pages: 1136

ISBN-13: 1447175034

DOWNLOAD EBOOK

In today’s global and highly competitive environment, continuous improvement in the processes and products of any field of engineering is essential for survival. This book gathers together the full range of statistical techniques required by engineers from all fields. It will assist them to gain sensible statistical feedback on how their processes or products are functioning and to give them realistic predictions of how these could be improved. The handbook will be essential reading for all engineers and engineering-connected managers who are serious about keeping their methods and products at the cutting edge of quality and competitiveness.


Advances in Statistics - Theory and Applications

Advances in Statistics - Theory and Applications

Author: Indranil Ghosh

Publisher: Springer Nature

Published: 2021-04-01

Total Pages: 443

ISBN-13: 3030629007

DOWNLOAD EBOOK

This edited collection brings together internationally recognized experts in a range of areas of statistical science to honor the contributions of the distinguished statistician, Barry C. Arnold. A pioneering scholar and professor of statistics at the University of California, Riverside, Dr. Arnold has made exceptional advancements in different areas of probability, statistics, and biostatistics, especially in the areas of distribution theory, order statistics, and statistical inference. As a tribute to his work, this book presents novel developments in the field, as well as practical applications and potential future directions in research and industry. It will be of interest to graduate students and researchers in probability, statistics, and biostatistics, as well as practitioners and technicians in the social sciences, economics, engineering, and medical sciences.


Public Health Research Methods

Public Health Research Methods

Author: Greg Guest

Publisher: SAGE

Published: 2015

Total Pages: 833

ISBN-13: 1452241333

DOWNLOAD EBOOK

Providing a comprehensive foundation for planning, executing, and monitoring public health research of all types, this book goes beyond traditional epidemiologic research designs to cover technology-based approaches emerging in the new public health landscape.


Capture-Recapture Methods for the Social and Medical Sciences

Capture-Recapture Methods for the Social and Medical Sciences

Author: Dankmar Bohning

Publisher: CRC Press

Published: 2017-07-28

Total Pages: 465

ISBN-13: 1498745342

DOWNLOAD EBOOK

Capture-recapture methods have been used in biology and ecology for more than 100 years. However, it is only recently that these methods have become popular in the social and medical sciences to estimate the size of elusive populations such as illegal immigrants, illicit drug users, or people with a drinking problem. Capture-Recapture Methods for the Social and Medical Sciences brings together important developments which allow the application of these methods. It has contributions from more than 40 researchers, and is divided into eight parts, including topics such as ratio regression models, capture-recapture meta-analysis, extensions of single and multiple source models, latent variable models and Bayesian approaches. The book is suitable for everyone who is interested in applying capture-recapture methods in the social and medical sciences. Furthermore, it is also of interest to those working with capture-recapture methods in biology and ecology, as there are some important developments covered in the book that also apply to these classical application areas.


Measuring Agreement

Measuring Agreement

Author: Pankaj K. Choudhary

Publisher: John Wiley & Sons

Published: 2018-01-25

Total Pages: 414

ISBN-13: 1118553241

DOWNLOAD EBOOK

Presents statistical methodologies for analyzing common types of data from method comparison experiments and illustrates their applications through detailed case studies Measuring Agreement: Models, Methods, and Applications features statistical evaluation of agreement between two or more methods of measurement of a variable with a primary focus on continuous data. The authors view the analysis of method comparison data as a two-step procedure where an adequate model for the data is found, and then inferential techniques are applied for appropriate functions of parameters of the model. The presentation is accessible to a wide audience and provides the necessary technical details and references. In addition, the authors present chapter-length explorations of data from paired measurements designs, repeated measurements designs, and multiple methods; data with covariates; and heteroscedastic, longitudinal, and categorical data. The book also: • Strikes a balance between theory and applications • Presents parametric as well as nonparametric methodologies • Provides a concise introduction to Cohen’s kappa coefficient and other measures of agreement for binary and categorical data • Discusses sample size determination for trials on measuring agreement • Contains real-world case studies and exercises throughout • Provides a supplemental website containing the related datasets and R code Measuring Agreement: Models, Methods, and Applications is a resource for statisticians and biostatisticians engaged in data analysis, consultancy, and methodological research. It is a reference for clinical chemists, ecologists, and biomedical and other scientists who deal with development and validation of measurement methods. This book can also serve as a graduate-level text for students in statistics and biostatistics.


Bayesian Inference and Computation in Reliability and Survival Analysis

Bayesian Inference and Computation in Reliability and Survival Analysis

Author: Yuhlong Lio

Publisher: Springer Nature

Published: 2022-08-01

Total Pages: 367

ISBN-13: 3030886581

DOWNLOAD EBOOK

Bayesian analysis is one of the important tools for statistical modelling and inference. Bayesian frameworks and methods have been successfully applied to solve practical problems in reliability and survival analysis, which have a wide range of real world applications in medical and biological sciences, social and economic sciences, and engineering. In the past few decades, significant developments of Bayesian inference have been made by many researchers, and advancements in computational technology and computer performance has laid the groundwork for new opportunities in Bayesian computation for practitioners. Because these theoretical and technological developments introduce new questions and challenges, and increase the complexity of the Bayesian framework, this book brings together experts engaged in groundbreaking research on Bayesian inference and computation to discuss important issues, with emphasis on applications to reliability and survival analysis. Topics covered are timely and have the potential to influence the interacting worlds of biostatistics, engineering, medical sciences, statistics, and more. The included chapters present current methods, theories, and applications in the diverse area of biostatistical analysis. The volume as a whole serves as reference in driving quality global health research.


Dynamic Time Series Models using R-INLA

Dynamic Time Series Models using R-INLA

Author: Nalini Ravishanker

Publisher: CRC Press

Published: 2022-08-10

Total Pages: 297

ISBN-13: 1000622606

DOWNLOAD EBOOK

Dynamic Time Series Models using R-INLA: An Applied Perspective is the outcome of a joint effort to systematically describe the use of R-INLA for analysing time series and showcasing the code and description by several examples. This book introduces the underpinnings of R-INLA and the tools needed for modelling different types of time series using an approximate Bayesian framework. The book is an ideal reference for statisticians and scientists who work with time series data. It provides an excellent resource for teaching a course on Bayesian analysis using state space models for time series. Key Features: Introduction and overview of R-INLA for time series analysis. Gaussian and non-Gaussian state space models for time series. State space models for time series with exogenous predictors. Hierarchical models for a potentially large set of time series. Dynamic modelling of stochastic volatility and spatio-temporal dependence.