Covering fundamental principles through to practical applications, this self-contained guide describes indispensable mathematical tools for the analysis and design of advanced wireless transmission and reception techniques in MIMO and OFDM systems. The analysis-oriented approach develops a thorough understanding of core concepts and discussion of various example schemes shows how to apply these concepts in practice. The book focuses on techniques for advanced diversity combining, channel adaptive transmission and multiuser scheduling, the foundations of future wireless systems for the delivery of highly spectrum-efficient wireless multimedia services. Bringing together conventional and novel results from a wide variety of sources, it will teach you to accurately quantify trade-offs between performance and complexity for different design options so that you can determine the most suitable design choice based on your specific practical implementation constraints.
A broad introduction to the fundamentals of wireless communication engineering technologies Covering both theory and practical topics, Fundamentals of Wireless Communication Engineering Technologies offers a sound survey of the major industry-relevant aspects of wireless communication engineering technologies. Divided into four main sections, the book examines RF, antennas, and propagation; wireless access technologies; network and service architectures; and other topics, such as network management and security, policies and regulations, and facilities infrastructure. Helpful cross-references are placed throughout the text, offering additional information where needed. The book provides: Coverage that is closely aligned to the IEEE's Wireless Communication Engineering Technologies (WCET) certification program syllabus, reflecting the author's direct involvement in the development of the program A special emphasis on wireless cellular and wireless LAN systems An excellent foundation for expanding existing knowledge in the wireless field by covering industry-relevant aspects of wireless communication Information on how common theories are applied in real-world wireless systems With a holistic and well-organized overview of wireless communications, Fundamentals of Wireless Communication Engineering Technologies is an invaluable resource for anyone interested in taking the WCET exam, as well as practicing engineers, professors, and students seeking to increase their knowledge of wireless communication engineering technologies.
A comprehensive reference giving a thorough explanation of propagation mechanisms, channel characteristics results, measurement approaches and the modelling of channels Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are then presented, which include conventional spectral-based estimation, the specular-path-model based high-resolution method, and the newly derived power spectrum estimation methods. Measurement results are used to compare the performance of the different estimation methods. The third part gives a complete introduction to different modelling approaches. Among them, both scattering theoretical channel modelling and measurement-based channel modelling approaches are detailed. This part also approaches how to utilize these two modelling approaches to investigate wireless channels for conventional cellular systems and some new emerging communication systems. This three-part approach means the book caters for the requirements of the audiences at different levels, including readers needing introductory knowledge, engineers who are looking for more advanced understanding, and expert researchers in wireless system design as a reference. Presents technical explanations, illustrated with examples of the theory in practice Discusses results applied to 4G communication systems and other emerging communication systems, such as relay, CoMP, and vehicle-to-vehicle rapid time-variant channels Can be used as comprehensive tutorial for students or a complete reference for engineers in industry Includes selected illustrations in color Program downloads available for readers Companion website with program downloads for readers and presentation slides and solution manual for instructors Essential reading for Graduate students and researchers interested in the characteristics of propagation channel, or who work in areas related to physical layer architectures, air interfaces, navigation, and wireless sensing
Intended for a graduate course on wireless communications, this textbook concentrates more on conceptual fundamentals than on rigorous mathematical treatment. The author first describes the radio environment, discussing issues of radio wave propagation theory, signal strength, and radio coverage are
Comprehensive resource describing both fundamentals and practical industry applications of antennas and radio propagation employed in modern wireless communication systems The newly revised and thoroughly updated Third Edition of this classic and popular text, Antennas and Propagation for Wireless Communication Systems addresses fundamentals and practical applications of antennas and radio propagation commonly used in modern wireless communication systems, from the basic electromagnetic principles to the characteristics of the technology employed in the most recent systems deployed, with an outlook of forthcoming developments in the field. Core topics include fundamental electromagnetic principles underlying propagation and antennas, basic concepts of antennas and their application to specific wireless systems, propagation measurement, modelling, and prediction for fixed links, macrocells, microcells, femtocells, picocells, megacells, and narrowband and wideband channel modelling with the effect of the channel on communication system performance. Worked examples and specific assignments for students are presented throughout the text (with a solutions manual available for course tutors), with a dedicated website containing online calculators and additional resources, plus details of simple measurements that students can perform with off-the-shelf equipment, such as their laptops and a Wi-Fi card. This Third Edition of Antennas and Propagation for Wireless Communication Systems has been thoroughly revised and updated, expanding on and adding brand new coverage of sample topics such as: Maxwell’s equations and EM theory, multiple reflections as propagation mechanisms, and waveguiding HAPS (High Altitude Platforms) propagation, design and noise considerations of earth stations, macrocell models, and cellular base station site engineering FSS (frequency selective surfaces), adaptive antenna theory developments (massive and distributed MIMO in particular), and how to process raw data related to channel measurements for mobile radio systems The techniques used in mobile systems spanning the latest 4G, 5G and 6G technology generations A wider range of frequencies, extending from HF, VHF and UHF up to the latest millimetre wave and sub terahertz bands With comprehensive coverage of foundational subject matter as well as major recent advancements in the field, Antennas and Propagation for Wireless Communication Systems is an essential resource for undergraduate and postgraduate students, researchers, and industry engineers in related disciplines.
This book introduces the theoretical elements at the basis of various classes of algorithms commonly employed in the physical layer (and, in part, in MAC layer) of wireless communications systems. It focuses on single user systems, so ignoring multiple access techniques. Moreover, emphasis is put on single-input single-output (SISO) systems, although some relevant topics about multiple-input multiple-output (MIMO) systems are also illustrated. Comprehensive wireless specific guide to algorithmic techniques Provides a detailed analysis of channel equalization and channel coding for wireless applications Unique conceptual approach focusing in single user systems Covers algebraic decoding, modulation techniques, channel coding and channel equalisation
ADVANCED WIRELESS COMMUNICATIONS AND INTERNET THIRD EDITION ADVANCED WIRELESS COMMUNICATIONS AND INTERNET Future Evolving Technologies The new edition of Advanced Wireless Communications: 4G Cognitive and Cooperative Broadband Technology, 2nd Edition, including the latest developments In the evolution of wireless communications, the dominant challenges are in the areas of networking and their integration with the Future Internet. Even the classical concept of cellular networks is changing and new technologies are evolving to replace it. To reflect these new trends, Advanced Wireless Communications & INTERNET builds upon the previous volumes, enhancing the existing chapters, and including a number of new topics. Systematically guiding readers from the fundamentals through to advanced areas, each chapter begins with an introductory explanation of the basic problems and solutions followed with an analytical treatment in greater detail. The most important aspects of new emerging technologies in wireless communications are comprehensively covered including: next generation Internet; cloud computing and network virtualization; economics of utility computing and wireless grids and clouds. This gives readers an essential understanding of the overall environment in which future wireless networks will be operating. Furthermore, a number of methodologies for maintaining the network connectivity, by using tools ranging from genetic algorithms to stochastic geometry and random graphs theory, and a discussion on percolation and connectivity, are also offered. The book includes a chapter on network formation games, covering the general models, knowledge based network formation games, and coalition games in wireless ad hoc networks. Illustrates points throughout using real-life case studies drawn from the author’s extensive international experience in the field of telecommunications Fully updated to include the latest developments, key topics covered include: advanced routing and network coding; network stability control; relay-assisted Wireless Networks; multicommodity flow optimization problems, flow optimization in heterogeneous networks, and dynamic resource allocation in computing clouds Methodically guides readers through each topic from basic to advanced areas Focuses on system elements that provide adaptability and re-configurability, and discusses how these features can improve wireless communications system performance Enjoyed this book? Why not tell others about it and write a review on your favourite online bookseller.