Baumeister organizes this book around the key subjects associated with functions of optical thin film performance, and provides a valuable resource in the field of thin film technology. The information is widely backed up with citations to patents and published literature. The author draws from 25 years of experience teaching classes at the UCLA Extension Program, and at companies worldwide to answer questions, such as: what are the conventions for a given analysis formalism? and, what other design approaches have been tried for this application?
This Spotlight gives a general overview of the durability of optical coatings and various durability tests referring to available civilian and military standards and specifications. It will allow a quick detection of the coating testing durability requirements and test conditions in MIL-Specs and other standards or specifications according to requirements defined in the relevant drawings or coating specifications. Intended for optical designers, this Spotlight is also useful for optical coating inspectors.
Optical coatings, i.e. multilayer stacks composed from a certain number of thin individual layers, are an essential part of any optical system necessary to tailor the properties of the optical surfaces. Hereby, the performance of any optical coating is defined by a well-balanced interplay between the properties of the individual coating materials and the geometrical parameters (such as film thickness) which define their arrangement. In all scientific books dealing with the performance of optical coatings, the main focus is on optimizing the geometrical coating parameters, particularly the number of individual layers and their thickness. At the same time, much less attention is paid to another degree of freedom in coating design, namely the possibility to tailor optical material properties to an optimum relevant for the required specification. This book, on the contrary, concentrates on the material aside of the problem. After a comprehensive review of the basics of thin film theory, traditional optical coating material properties and their relation to the efficiency of coating design methods, emphasis is placed on novel results concerning the application of material mixtures and nanostructured coatings in optical coating theory and practice, including porous layers, dielectric mixtures as well as metal island films for different applications.
Optics and photonics offer new and vibrant approaches to meeting the challenges of the 21st century concerning energy conservation, education, agriculture, personal health and the environment. One of the most effective ways to address these global problems is to provide updated and reliable content on light-based technologies. Optical thin films and meta-materials, lasers, optical communications, light-emitting diodes, solar cells, liquid crystal technology, nanophotonics and biophotonics all play vital roles in enriching our lives. We hope to raise readers’ awareness of how optical technologies are now promoting sustainable development and providing reliable solutions to basic human needs. Furthermore, in order to broaden new research fields, we hope to inspire them to pursue further cutting-edge breakthroughs on the basis of the accomplishments that have already been made.
Thermal noise from optical coatings is a growing area of concern and overcoming limits to the sensitivity of high precision measurements by thermal noise is one of the greatest challenges faced by experimental physicists. In this timely book, internationally renowned scientists and engineers examine our current theoretical and experimental understanding. Beginning with the theory of thermal noise in mirrors and substrates, subsequent chapters discuss the technology of depositing coatings and state-of-the-art dielectric coating techniques used in precision measurement. Applications and remedies for noise reduction are also covered. Individual chapters are dedicated to specific fields where coating thermal noise is a particular concern, including the areas of quantum optics/optomechanics, gravitational wave detection, precision timing, high-precision laser stabilisation via optical cavities and cavity quantum electrodynamics. While providing full mathematical detail, the text avoids field-specific jargon, making it a valuable resource for readers with varied backgrounds in modern optics.
Selected by the American Library Association's 'Choice' magazine as "best technical book", the first edition of this book soon established itself as the standard reference work on all aspects of photographic lenses and associated optical systems. This is unsurprising, as Sidney Ray provides a complete, comprehensive reference source for anyone wanting information on photographic lenses, from the student to the practitioner or specialist working with visual and digital media worldwide. This third edition has been fully revised and expanded to include the rapid progress in the last decade in optical technology and advances in relevant electronic and digital forms of imaging. Every chapter has been revised and expanded using new figures and photographs as appropriate, as well as extended bibliographies. New chapters include details of filters, measurements from images and the optical systems of digital cameras. Details of electronic and digital imaging have been integrated throughout. More information is given on topics such as aspherics, diffractive optics, ED glasses, image stabilization, optical technology, video projection and new types of lenses. A selection of the contents includes chapters on: optical theory, aberrations, auto focus, lens testing, depth of field, development of photographic lenses, general properties of lenses, wide-angle lenses, telephoto lenses, video lenses, viewfinder systems, camera movements, projection systems and 3-D systems.
This book provides a cutting-edge research overview on the latest developments in the field of Optics and Photonics. All chapters are authored by the pioneers in their field and will cover the developments in Quantum Photonics, Optical properties of 2D Materials, Optical Sensors, Organic Opto-electronics, Nanophotonics, Metamaterials, Plasmonics, Quantum Cascade lasers, LEDs, Biophotonics and biomedical photonics and spectroscopy.
This book is a comprehensive introduction on infrared anti-transparent materials and their applications in anti-reflective and protective coatings. Optical, mechanical and thermal properties and preparations of various kinds of films, such as amorphous diamond films, germanium carbide films, boron phosphide films, alumina films and yttrium oxide film are discussed in detail making it suitable for material scientists and industrial engineers.
With this self-contained and comprehensive text, students will gain a detailed understanding of the fundamental concepts and major principles of photonics. Assuming only a basic background in optics, readers are guided through key topics such as the nature of optical fields, the properties of optical materials, and the principles of major photonic functions regarding the generation, propagation, coupling, interference, amplification, modulation, and detection of optical waves or signals. Numerous examples and problems are provided throughout to enhance understanding, and a solutions manual containing detailed solutions and explanations is available online for instructors. This is the ideal resource for electrical engineering and physics undergraduates taking introductory, single-semester or single-quarter courses in photonics, providing them with the knowledge and skills needed to progress to more advanced courses on photonic devices, systems and applications.