Equivalences of Classifying Spaces Completed at the Prime Two

Equivalences of Classifying Spaces Completed at the Prime Two

Author: Robert Oliver

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 116

ISBN-13: 0821838288

DOWNLOAD EBOOK

We prove here the Martino-Priddy conjecture at the prime $2$: the $2$-completions of the classifying spaces of two finite groups $G$ and $G'$ are homotopy equivalent if and only if there is an isomorphism between their Sylow $2$-subgroups which preserves fusion. This is a consequence of a technical algebraic result, which says that for a finite group $G$, the second higher derived functor of the inverse limit vanishes for a certain functor $\mathcal{Z}_G$ on the $2$-subgroup orbit category of $G$. The proof of this result uses the classification theorem for finite simple groups.


Homotopy Theory of Function Spaces and Related Topics

Homotopy Theory of Function Spaces and Related Topics

Author: Yves Félix

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 246

ISBN-13: 0821849298

DOWNLOAD EBOOK

This volume contains the proceedings of the Workshop on Homotopy Theory of Function Spaces and Related Topics, which was held at the Mathematisches Forschungsinstitut Oberwolfach, in Germany, from April 5-11, 2009. This volume contains fourteen original research articles covering a broad range of topics that include: localization and rational homotopy theory, evaluation subgroups, free loop spaces, Whitehead products, spaces of algebraic maps, gauge groups, loop groups, operads, and string topology. In addition to reporting on various topics in the area, this volume is supposed to facilitate the exchange of ideas within Homotopy Theory of Function Spaces, and promote cross-fertilization between Homotopy Theory of Function Spaces and other areas. With these latter aims in mind, this volume includes a survey article which, with its extensive bibliography, should help bring researchers and graduate students up to speed on activity in this field as well as a problems list, which is an expanded and edited version of problems discussed in sessions held at the conference. The problems list is intended to suggest directions for future work.


Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory

Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory

Author: Paul Gregory Goerss

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 520

ISBN-13: 0821832859

DOWNLOAD EBOOK

As part of its series of Emphasis Years in Mathematics, Northwestern University hosted an International Conference on Algebraic Topology. The purpose of the conference was to develop new connections between homotopy theory and other areas of mathematics. This proceedings volume grew out of that event. Topics discussed include algebraic geometry, cohomology of groups, algebraic $K$-theory, and $\mathbb{A 1$ homotopy theory. Among the contributors to the volume were Alejandro Adem,Ralph L. Cohen, Jean-Louis Loday, and many others. The book is suitable for graduate students and research mathematicians interested in homotopy theory and its relationship to other areas of mathematics.


Fusion Systems in Algebra and Topology

Fusion Systems in Algebra and Topology

Author: Michael Aschbacher

Publisher: Cambridge University Press

Published: 2011-08-25

Total Pages: 329

ISBN-13: 1107601002

DOWNLOAD EBOOK

A fusion system over a p-group S is a category whose objects form the set of all subgroups of S, whose morphisms are certain injective group homomorphisms, and which satisfies axioms first formulated by Puig that are modelled on conjugacy relations in finite groups. The definition was originally motivated by representation theory, but fusion systems also have applications to local group theory and to homotopy theory. The connection with homotopy theory arises through classifying spaces which can be associated to fusion systems and which have many of the nice properties of p-completed classifying spaces of finite groups. Beginning with a detailed exposition of the foundational material, the authors then proceed to discuss the role of fusion systems in local finite group theory, homotopy theory and modular representation theory. This book serves as a basic reference and as an introduction to the field, particularly for students and other young mathematicians.


Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type

Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type

Author: Carles Broto

Publisher: American Mathematical Soc.

Published: 2020-02-13

Total Pages: 176

ISBN-13: 1470437724

DOWNLOAD EBOOK

For a finite group G of Lie type and a prime p, the authors compare the automorphism groups of the fusion and linking systems of G at p with the automorphism group of G itself. When p is the defining characteristic of G, they are all isomorphic, with a very short list of exceptions. When p is different from the defining characteristic, the situation is much more complex but can always be reduced to a case where the natural map from Out(G) to outer automorphisms of the fusion or linking system is split surjective. This work is motivated in part by questions involving extending the local structure of a group by a group of automorphisms, and in part by wanting to describe self homotopy equivalences of BG∧p in terms of Out(G).


Handbook of Homotopy Theory

Handbook of Homotopy Theory

Author: Haynes Miller

Publisher: CRC Press

Published: 2020-01-23

Total Pages: 1142

ISBN-13: 1351251600

DOWNLOAD EBOOK

The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.


Groups of Homotopy Self-Equivalences and Related Topics

Groups of Homotopy Self-Equivalences and Related Topics

Author: Ken-ichi Maruyama

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 330

ISBN-13: 0821826832

DOWNLOAD EBOOK

This volume offers the proceedings from the workshop held at the University of Milan (Italy) on groups of homotopy self-equivalences and related topics. The book comprises the articles relating current research on the group of homotopy self-equivalences, homotopy of function spaces, rational homotopy theory, classification of homotopy types, and equivariant homotopy theory. Mathematicians from many areas of the globe attended the workshops to discuss their research and to share ideas. Included are two specially-written articles, by J.W. Rutter, reviewing the work done in the area of homotopy self-equivalences since 1988. Included also is a bibliography of some 122 articles published since 1988 and a list of problems. This book is suitable for both advanced graduate students and researchers.


Equivariant Stable Homotopy Theory

Equivariant Stable Homotopy Theory

Author: L. Gaunce Jr. Lewis

Publisher: Springer

Published: 2006-11-14

Total Pages: 548

ISBN-13: 3540470778

DOWNLOAD EBOOK

This book is a foundational piece of work in stable homotopy theory and in the theory of transformation groups. It may be roughly divided into two parts. The first part deals with foundations of (equivariant) stable homotopy theory. A workable category of CW-spectra is developed. The foundations are such that an action of a compact Lie group is considered throughout, and spectra allow desuspension by arbitrary representations. But even if the reader forgets about group actions, he will find many details of the theory worked out for the first time. More subtle constructions like smash products, function spectra, change of group isomorphisms, fixed point and orbit spectra are treated. While it is impossible to survey properly the material which is covered in the book, it does boast these general features: (i) a thorough and reliable presentation of the foundations of the theory; (ii) a large number of basic results, principal applications, and fundamental techniques presented for the first time in a coherent theory, unifying numerous treatments of special cases in the literature.