Numerical Modeling of the Global Atmosphere in the Climate System

Numerical Modeling of the Global Atmosphere in the Climate System

Author: Philip Mote

Publisher: Springer Science & Business Media

Published: 2000-04-30

Total Pages: 536

ISBN-13: 9780792363026

DOWNLOAD EBOOK

21. Simulating Future Climate G. J. Boer 1 Introduction. . . . . . . . . . . . . . . . 489 2 International Aspects . . . . . . . . . . . 490 3 Simulating Historical and Future Climate 492 4 Climate Change in the 20th Century . . . 495 5 Simulating Future Climate Change 498 6 Climate Impact, Adaptation, and Mitigation 501 7 Summary . 502 Index 505 PREFACE Numerical modeling ofthe global atmosphere has entered a new era. Whereas atmospheric modeling was once the domain ofa few research units at universities or government laboratories, it can now be performed almost anywhere thanks to the affordability of computing power. Atmospheric general circulation models (GCMs) are being used by a rapidly growing scientific community in a wide range of applications. With widespread interest in anthropogenic climate change, GCMs have a role also in informing policy discussions. Many of the scientists using GCMs have backgrounds in fields other than atmospheric sciences and may be unaware of how GCMs are constructed. Recognizing this explosion in the application of GCMs, we organized a two week course in order to give young scientists who are relatively new to the field of atmospheric modeling a thorough grounding in the basic principles on which GCMs are constructed, an insight into their strengths and weaknesses, and guid ance on how meaningful numerical experiments are formulated and analyzed. Sponsored by the North Atlantic Treaty Organization (NATO) and other institu tions, this Advanced Study Institute (ASI) took place May 25-June 5, 1998, at II Ciocco, a remote hotel on a Tuscan hillside in Italy.


Numerical Techniques for Global Atmospheric Models

Numerical Techniques for Global Atmospheric Models

Author: Peter H. Lauritzen

Publisher: Springer Science & Business Media

Published: 2011-03-29

Total Pages: 570

ISBN-13: 364211640X

DOWNLOAD EBOOK

This book surveys recent developments in numerical techniques for global atmospheric models. It is based upon a collection of lectures prepared by leading experts in the field. The chapters reveal the multitude of steps that determine the global atmospheric model design. They encompass the choice of the equation set, computational grids on the sphere, horizontal and vertical discretizations, time integration methods, filtering and diffusion mechanisms, conservation properties, tracer transport, and considerations for designing models for massively parallel computers. A reader interested in applied numerical methods but also the many facets of atmospheric modeling should find this book of particular relevance.


Numerical Modeling of the Global Atmosphere in the Climate System

Numerical Modeling of the Global Atmosphere in the Climate System

Author: Philip Mote

Publisher: Springer Science & Business Media

Published: 2000-04-30

Total Pages: 540

ISBN-13: 9780792363019

DOWNLOAD EBOOK

21. Simulating Future Climate G. J. Boer 1 Introduction. . . . . . . . . . . . . . . . 489 2 International Aspects . . . . . . . . . . . 490 3 Simulating Historical and Future Climate 492 4 Climate Change in the 20th Century . . . 495 5 Simulating Future Climate Change 498 6 Climate Impact, Adaptation, and Mitigation 501 7 Summary . 502 Index 505 PREFACE Numerical modeling ofthe global atmosphere has entered a new era. Whereas atmospheric modeling was once the domain ofa few research units at universities or government laboratories, it can now be performed almost anywhere thanks to the affordability of computing power. Atmospheric general circulation models (GCMs) are being used by a rapidly growing scientific community in a wide range of applications. With widespread interest in anthropogenic climate change, GCMs have a role also in informing policy discussions. Many of the scientists using GCMs have backgrounds in fields other than atmospheric sciences and may be unaware of how GCMs are constructed. Recognizing this explosion in the application of GCMs, we organized a two week course in order to give young scientists who are relatively new to the field of atmospheric modeling a thorough grounding in the basic principles on which GCMs are constructed, an insight into their strengths and weaknesses, and guid ance on how meaningful numerical experiments are formulated and analyzed. Sponsored by the North Atlantic Treaty Organization (NATO) and other institu tions, this Advanced Study Institute (ASI) took place May 25-June 5, 1998, at II Ciocco, a remote hotel on a Tuscan hillside in Italy.


Downscaling Techniques for High-Resolution Climate Projections

Downscaling Techniques for High-Resolution Climate Projections

Author: Rao Kotamarthi

Publisher: Cambridge University Press

Published: 2021-02-11

Total Pages: 213

ISBN-13: 1108587062

DOWNLOAD EBOOK

Downscaling is a widely used technique for translating information from large-scale climate models to the spatial and temporal scales needed to assess local and regional climate impacts, vulnerability, risk and resilience. This book is a comprehensive guide to the downscaling techniques used for climate data. A general introduction of the science of climate modeling is followed by a discussion of techniques, models and methodologies used for producing downscaled projections, and the advantages, disadvantages and uncertainties of each. The book provides detailed information on dynamic and statistical downscaling techniques in non-technical language, as well as recommendations for selecting suitable downscaled datasets for different applications. The use of downscaled climate data in national and international assessments is also discussed using global examples. This is a practical guide for graduate students and researchers working on climate impacts and adaptation, as well as for policy makers and practitioners interested in climate risk and resilience.


The Climate Modelling Primer

The Climate Modelling Primer

Author: Kendal McGuffie

Publisher: John Wiley & Sons

Published: 2014-01-31

Total Pages: 455

ISBN-13: 1118747186

DOWNLOAD EBOOK

As a consequence of recent increased awareness of the social and political dimensions of climate, many non-specialists discover a need for information about the variety of available climate models. A Climate Modelling Primer, Fourth Edition is designed to explain the basis and mechanisms of all types of current physically-based climate models. A thoroughly revised and updated edition, this book will assist the reader in understanding the complexities and applicabilities of today’s wide range of climate models. Topics covered include the latest techniques for modelling the coupled biosphere-ocean-atmosphere system, information on current practical aspects of climate modelling and ways to evaluate and exploit the results, discussion of Earth System Models of Intermediate Complexity (EMICs), and interactive exercises based on Energy Balance Model (EBM) and the Daisyworld model. Source codes and results from a range of model types allows readers to make their own climate simulations and to view the results of the latest high resolution models. Now in full colour throughout and with the addition of cartoons to enhance student understanding the new edition of this successful textbook enables the student to tackle the difficult subject of climate modeling.


Demystifying Climate Models

Demystifying Climate Models

Author: Andrew Gettelman

Publisher: Springer

Published: 2016-04-09

Total Pages: 282

ISBN-13: 3662489597

DOWNLOAD EBOOK

This book demystifies the models we use to simulate present and future climates, allowing readers to better understand how to use climate model results. In order to predict the future trajectory of the Earth’s climate, climate-system simulation models are necessary. When and how do we trust climate model predictions? The book offers a framework for answering this question. It provides readers with a basic primer on climate and climate change, and offers non-technical explanations for how climate models are constructed, why they are uncertain, and what level of confidence we should place in them. It presents current results and the key uncertainties concerning them. Uncertainty is not a weakness but understanding uncertainty is a strength and a key part of using any model, including climate models. Case studies of how climate model output has been used and how it might be used in the future are provided. The ultimate goal of this book is to promote a better understanding of the structure and uncertainties of climate models among users, including scientists, engineers and policymakers.


High Resolution Numerical Modelling of the Atmosphere and Ocean

High Resolution Numerical Modelling of the Atmosphere and Ocean

Author: Kevin Hamilton

Publisher: Springer Science & Business Media

Published: 2007-12-25

Total Pages: 298

ISBN-13: 0387497919

DOWNLOAD EBOOK

This highly relevant text documents the first international meeting focused specifically on high-resolution atmospheric and oceanic modeling. It was held recently at the Earth Simulator Center in Yokohama, Japan. Rather than producing a standard conference proceedings volume, the editors have decided to compose this volume entirely of papers written by invited speakers at the meeting, who report on their most exciting recent results involving high resolution modeling.


The Global Circulation of the Atmosphere

The Global Circulation of the Atmosphere

Author: Tapio Schneider

Publisher: Princeton University Press

Published: 2022-12-13

Total Pages: 400

ISBN-13: 0691242399

DOWNLOAD EBOOK

Despite major advances in the observation and numerical simulation of the atmosphere, basic features of the Earth's climate remain poorly understood. Integrating the available data and computational resources to improve our understanding of the global circulation of the atmosphere remains a challenge. Theory must play a critical role in meeting this challenge. This book provides an authoritative summary of the state of the art on this front. Bringing together sixteen of the field's leading experts to address those aspects of the global circulation of the atmosphere most relevant to climate, the book brings the reader up to date on the key frontiers in general circulation theory-including the nonlinear and turbulent global-scale dynamics that determine fundamental aspects of the Earth's climate. While emphasizing theory, as expressed through relatively simple mathematical models, it also draws connections to simulations with comprehensive general circulation models. Topics include the dynamics of storm tracks, interactions between wave dynamics and the hydrological cycle, monsoons, tropical and extratropical dynamics and interactions, and the processes controlling atmospheric humidity. An essential resource for graduate students in atmospheric, ocean, and climate sciences and for researchers seeking an overview of the field, The Global Circulation of the Atmosphere sets the standard for future research in a science that stands at a critical juncture. With a foreword by Edward Lorenz, the book includes chapters by Christopher Bretherton; Kerry Emanuel; Isaac Held; David Neelin; Raymond Pierrehumbert, Hélène Brogniez, and Rémy Roca; Alan Plumb; Walter Robinson; Tapio Schneider; Richard Seager and David Battisti; Adam Sobel; Kyle Swanson; and Pablo Zurita-Gotor and Richard Lindzen.


Introduction to Climate Modelling

Introduction to Climate Modelling

Author: Thomas Stocker

Publisher: Springer Science & Business Media

Published: 2011-05-25

Total Pages: 193

ISBN-13: 3642007732

DOWNLOAD EBOOK

A three-tier approach is presented: (i) fundamental dynamical concepts of climate processes, (ii) their mathematical formulation based on balance equations, and (iii) the necessary numerical techniques to solve these equations. This book showcases the global energy balance of the climate system and feedback processes that determine the climate sensitivity, initial-boundary value problems, energy transport in the climate system, large-scale ocean circulation and abrupt climate change.