Numerical Methods for Fluids, Part 3
Author: P.G. Ciarlet
Publisher: Elsevier
Published: 2003-07-25
Total Pages: 1187
ISBN-13: 0080507948
DOWNLOAD EBOOKNumerical Methods for Fluids, Part 3
Read and Download eBook Full
Author: P.G. Ciarlet
Publisher: Elsevier
Published: 2003-07-25
Total Pages: 1187
ISBN-13: 0080507948
DOWNLOAD EBOOKNumerical Methods for Fluids, Part 3
Author: Eleuterio F. Toro
Publisher: Springer Science & Business Media
Published: 2013-04-17
Total Pages: 635
ISBN-13: 366203915X
DOWNLOAD EBOOKHigh resolution upwind and centered methods are today a mature generation of computational techniques applicable to a wide range of engineering and scientific disciplines, Computational Fluid Dynamics (CFD) being the most prominent up to now. This textbook gives a comprehensive, coherent and practical presentation of this class of techniques. The book is designed to provide readers with an understanding of the basic concepts, some of the underlying theory, the ability to critically use the current research papers on the subject, and, above all, with the required information for the practical implementation of the methods. Applications include: compressible, steady, unsteady, reactive, viscous, non-viscous and free surface flows.
Author: Dale R. Durran
Publisher: Springer Science & Business Media
Published: 2010-09-14
Total Pages: 527
ISBN-13: 1441964126
DOWNLOAD EBOOKThis scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean
Author: William Layton
Publisher: SIAM
Published: 2008-01-01
Total Pages: 220
ISBN-13: 0898718902
DOWNLOAD EBOOKIntroduction to the Numerical Analysis of Incompressible Viscous Flows treats the numerical analysis of finite element computational fluid dynamics. Assuming minimal background, the text covers finite element methods; the derivation, behavior, analysis, and numerical analysis of Navier-Stokes equations; and turbulence and turbulence models used in simulations. Each chapter on theory is followed by a numerical analysis chapter that expands on the theory. This book provides the foundation for understanding the interconnection of the physics, mathematics, and numerics of the incompressible case, which is essential for progressing to the more complex flows not addressed in this book (e.g., viscoelasticity, plasmas, compressible flows, coating flows, flows of mixtures of fluids, and bubbly flows). With mathematical rigor and physical clarity, the book progresses from the mathematical preliminaries of energy and stress to finite element computational fluid dynamics in a format manageable in one semester. Audience: this unified treatment of fluid mechanics, analysis, and numerical analysis is intended for graduate students in mathematics, engineering, physics, and the sciences who are interested in understanding the foundations of methods commonly used for flow simulations.
Author: Ernst Heinrich Hirschel
Publisher: Springer Science & Business Media
Published: 2009-05-19
Total Pages: 507
ISBN-13: 3540708057
DOWNLOAD EBOOKIn a book that will be required reading for engineers, physicists, and computer scientists, the editors have collated a number of articles on fluid mechanics, written by some of the world’s leading researchers and practitioners in this important subject area.
Author: Philippe G. Ciarlet
Publisher: Elsevier
Published: 1990
Total Pages: 827
ISBN-13: 0444530479
DOWNLOAD EBOOKHandbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.
Author: Dale R. Durran
Publisher: Springer Science & Business Media
Published: 2013-03-14
Total Pages: 476
ISBN-13: 1475730810
DOWNLOAD EBOOKCovering a wide range of techniques, this book describes methods for the solution of partial differential equations which govern wave propagation and are used in modeling atmospheric and oceanic flows. The presentation establishes a concrete link between theory and practice.
Author: Joel H Ferziger
Publisher:
Published: 1996-02-14
Total Pages: 380
ISBN-13: 9783642976520
DOWNLOAD EBOOKAuthor: Roger Temam
Publisher: Elsevier
Published: 2009-06-16
Total Pages: 797
ISBN-13: 0080931030
DOWNLOAD EBOOKThis book provides a survey of the frontiers of research in the numerical modeling and mathematical analysis used in the study of the atmosphere and oceans. The details of the current practices in global atmospheric and ocean models, the assimilation of observational data into such models and the numerical techniques used in theoretical analysis of the atmosphere and ocean are among the topics covered.• Truly interdisciplinary: scientific interactions between specialties of atmospheric and ocean sciences and applied and computational mathematics • Uses the approach of computational mathematicians, applied and numerical analysts and the tools appropriate for unsolved problems in the atmospheric and oceanic sciences• Contributions uniquely address central problems and provide a survey of the frontier of research
Author: Stephen Campbell
Publisher: Springer
Published: 2019-06-08
Total Pages: 324
ISBN-13: 3030037185
DOWNLOAD EBOOKThis volume encompasses prototypical, innovative and emerging examples and benchmarks of Differential-Algebraic Equations (DAEs) and their applications, such as electrical networks, chemical reactors, multibody systems, and multiphysics models, to name but a few. Each article begins with an exposition of modelling, explaining whether the model is prototypical and for which applications it is used. This is followed by a mathematical analysis, and if appropriate, a discussion of the numerical aspects including simulation. Additionally, benchmark examples are included throughout the text. Mathematicians, engineers, and other scientists, working in both academia and industry either on differential-algebraic equations and systems or on problems where the tools and insight provided by differential-algebraic equations could be useful, would find this book resourceful.