Numerical Computation Using C is a four-chapter text guide for learning C language from the numerical analysis viewpoint. C is a general-purpose language that has been used in systems programming. The first chapter discusses the basic principles, logic, operators, functions, arrays, and structures of C language. The next two chapters deal with the uses of the so-called pointers in the C language, which is a variable that contains the address of some object in memory. These chapters also elaborate on several constructs to show how the use of C language can be fine-tuned. The last chapter highlights the practical aspects of C language. This book will be of value to computer scientists and mathematicians.
Learn applied numerical computing using the C programming language, starting with a quick primer on the C programming language and its SDK. This book then dives into progressively more complex applied math formula for computational methods using C with examples throughout and a larger, more complete application towards the end. Numerical C starts with the quadratic formula for finding solutions to algebraic equations that model things such as price vs. demand or rise vs. run or slip and more. Later in the book, you'll work on the augmented matrix method for simultaneous equations. You’ll also cover Monte Carlo method model objects that could arise naturally as part of the modeling of a real-life system, such as a complex road network, the transport of neutrons, or the evolution of the stock market. Furthermore, the Monte Carlo method of integration examines the area under a curve including rendering or ray tracing and the shading in a region. Furthermore, you'll work with the product moment correlation coefficient: correlation is a technique for investigating the relationship between two quantitative, continuous variables, for example, age and blood pressure. By the end of the book, you'll have a feeling for what computer software could do to help you in your work and apply some of the methods learned directly to your work. What You Will Learn Gain software and C programming basicsWrite software to solve applied, computational mathematics problems Create programs to solve equations and calculus problems Use the trapezium method, Monte Carlo method, line of best fit, product moment correlation coefficient, Simpson’s rule, and matrix solutions Write code to solve differential equations Apply one or more of the methods to an application case study Who This Book Is For Those with an existing knowledge of rudimentary mathematics (school level) and some basic programming experience. This is also important to people who may work in mathematics or other areas (for example, life sciences, engineering, or economics) and need to learn C programming.
A visual, interdisciplinary approach to solving problems in numerical methods Computing for Numerical Methods Using Visual C++ fills the need for a complete, authoritative book on the visual solutions to problems in numerical methods using C++. In an age of boundless research, there is a need for a programming language that can successfully bridge the communication gap between a problem and its computing elements through the use of visual-ization for engineers and members of varying disciplines, such as biologists, medical doctors, mathematicians, economists, and politicians. This book takes an interdisciplinary approach to the subject and demonstrates how solving problems in numerical methods using C++ is dominant and practical for implementation due to its flexible language format, object-oriented methodology, and support for high numerical precisions. In an accessible, easy-to-follow style, the authors cover: Numerical modeling using C++ Fundamental mathematical tools MFC interfaces Curve visualization Systems of linear equations Nonlinear equations Interpolation and approximation Differentiation and integration Eigenvalues and Eigenvectors Ordinary differential equations Partial differential equations This reader-friendly book includes a companion Web site, giving readers free access to all of the codes discussed in the book as well as an equation parser called "MyParser" that can be used to develop various numerical applications on Windows. Computing for Numerical Methods Using Visual C++ serves as an excellent reference for students in upper undergraduate- and graduate-level courses in engineering, science, and mathematics. It is also an ideal resource for practitioners using Microsoft Visual C++.
This book is aimed at those in engineering/scientific fields who have never learned programming before but are eager to master the C language quickly so as to immediately apply it to problem solving in numerical analysis. The book skips unnecessary formality but explains all the important aspects of C essential for numerical analysis. Topics covered in numerical analysis include single and simultaneous equations, differential equations, numerical integration, and simulations by random numbers. In the Appendices, quick tutorials for gnuplot, Octave/MATLAB, and FORTRAN for C users are provided.
Makes Numerical Programming More Accessible to a Wider Audience Bearing in mind the evolution of modern programming, most specifically emergent programming languages that reflect modern practice, Numerical Programming: A Practical Guide for Scientists and Engineers Using Python and C/C++ utilizes the author’s many years of practical research and teaching experience to offer a systematic approach to relevant programming concepts. Adopting a practical, broad appeal, this user-friendly book offers guidance to anyone interested in using numerical programming to solve science and engineering problems. Emphasizing methods generally used in physics and engineering—from elementary methods to complex algorithms—it gradually incorporates algorithmic elements with increasing complexity. Develop a Combination of Theoretical Knowledge, Efficient Analysis Skills, and Code Design Know-How The book encourages algorithmic thinking, which is essential to numerical analysis. Establishing the fundamental numerical methods, application numerical behavior and graphical output needed to foster algorithmic reasoning, coding dexterity, and a scientific programming style, it enables readers to successfully navigate relevant algorithms, understand coding design, and develop efficient programming skills. The book incorporates real code, and includes examples and problem sets to assist in hands-on learning. Begins with an overview on approximate numbers and programming in Python and C/C++, followed by discussion of basic sorting and indexing methods, as well as portable graphic functionality Contains methods for function evaluation, solving algebraic and transcendental equations, systems of linear algebraic equations, ordinary differential equations, and eigenvalue problems Addresses approximation of tabulated functions, regression, integration of one- and multi-dimensional functions by classical and Gaussian quadratures, Monte Carlo integration techniques, generation of random variables, discretization methods for ordinary and partial differential equations, and stability analysis This text introduces platform-independent numerical programming using Python and C/C++, and appeals to advanced undergraduate and graduate students in natural sciences and engineering, researchers involved in scientific computing, and engineers carrying out applicative calculations.
Now the acclaimed Second Edition of Numerical Recipes is available in the C++ object-oriented programming language. Including and updating the full mathematical and explanatory contents of Numerical Recipes in C, this new version incorporates completely new C++ versions of the more than 300 Numerical Recipes routines that are widely recognized as the most accessible and practical basis for scientific computing. The product of a unique collaboration among four leading scientists in academic research and industry, Numerical Recipes is a complete text and reference book on scientific computing. In a self-contained manner it proceeds from mathematical and theoretical considerations to actual practical computer routines. Highlights include linear algebra, interpolation, special functions, random numbers, nonlinear sets of equations, optimization, eigensystems, Fourier methods and wavelets, statistical tests, ODEs and PDEs, integral equations and inverse theory. The authors approach to C++ preserves the efficient execution that C users expect, while simultaneously employing a clear, object-oriented interface to the routines. Tricks and tips for scientific computing in C++ are liberally included. The routines, in ANSI/ISO C++ source code, can thus be used with almost any existing C++ vector/matrix class library, according to user preference. A simple class library for stand-alone use is also included in the book. Both scientific programmers new to C++, and experienced C++ programmers who need access to the Numerical Recipes routines, can benefit from this important new version of an invaluable, classic text.
This extensive library of computer programs-written in C language-allows readers to solve numerical problems in areas of linear algebra, ordinary and partial differential equations, optimization, parameter estimation, and special functions of mathematical physics. The library is based on NUMAL, the program assemblage developed and used at the Centre for Mathematics and Computer Science in Amsterdam, one of the world's leading research centers. The important characteristic of the library is its modular structure. Because it is highly compact, it is well-suited for use on personal computers. The library offers the expert a prodigious collection of procedures for implementing numerical methods. The novice can experiment with the worked examples provided and use the more comprehensive procedures to perform mathematical computations. The library provides a powerful research tool for computer scientists, engineers, and applied mathematicians. Applicable materials can be downloaded from the CRC Press website.
Designed for the non-expert student, enthusiast, or researcher, this text provides an accessible introduction to numerical computation and its applications in science and engineering. It assumes no prior knowledge beyond undergraduate calculus and elementary computer programming. Fundamental and practical issues are discussed in a unified manner with a generous, but not excessive, dose of numerical analysis. Topics are introduced on a need to know basis to concisely illustrate the practical implementation of a variety of algorithms and demystify seemingly esoteric numerical methods. Algorithms that can be explained without too much elaboration and can be implemented within a few dozen lines of computer code are discussed in detail, and computer programs in Fortran, C++, and Matlab are provided. Algorithms whose underlying theories require long, elaborate explanations are discussed at the level of first principles, and references for further information are given. The book uses numerous schematic illustrations to demonstrate concepts and facilitate their understanding by providing readers with a helpful interplay between ideas and visual images. Real-world examples drawn from various branches of science and engineering are presented. Updated information on computer technology and numerical methods is included, many new and some original topics are introduced. Additional solved and unsolved problems are included.
This book explains how precise numerical analysis is constructed with C++. Included is a CD-ROM which contains executable Windows 95 programs for the PC and which demonstrates how these programs can be used to solvetypical problems of elementary numerical analysis with precision. The book also provides exercises which illustrate points from the text and references for the methods presented.