The nucleon optical model is widely used to calculate the elastic scattering cross-sections and polarisations for the interaction of neutrons and protons with atomic nuclei. The optical model potentials not only describe the scattering but also provide the wave functions needed to analyse a wide range of nuclear reactions. They also unify many aspects of nuclear reactions and nuclear structure. This book consists of a comprehensive introduction to the subject and a selection of papers by the author describing the optical model in detail. It contains full references to the original literature with many examples of the application of the model to the analysis of experimental data.
The nucleon optical model is widely used to calculate the elastic scattering cross-sections and polarisations for the interaction of neutrons and protons with atomic nuclei. The optical model potentials not only describe the scattering but also provide the wave functions needed to analyse a wide range of nuclear reactions. They also unify many aspects of nuclear reactions and nuclear structure. This book consists of a comprehensive introduction to the subject and a selection of papers by the author describing the optical model in detail. It contains full references to the original literature with many examples of the application of the model to the analysis of experimental data.
Few Body Dynamics presents the proceedings of the VII International Conference on Few Body Problems in Nuclear and Particle Physics, held in Delhi from December 29, 1975 to January 3, 1976. Invited speakers talked about topics ranging from dynamic equations and approximation methods to computation and experimental techniques, few body bound states, breakup reactions and polarization, few electron systems, and photon and electron probes on few body systems. Speakers also covered few body reactions with mesons and resonances, few body aspects of nuclear reactions and scattering, three body forces in nuclei, and quark physics. Comprised of four parts encompassing 145 chapters, this volume summarizes the status and results from experimental facilities such as the Bhabha Atomic Research Centre in India, TRIUMF in Canada, and the Clinton P. Anderson Meson Physics Facility in the United States. It also discusses completeness relations in scattering theory for non-Hermitian potentials, ambiguities in phase-shift analysis, and parametrization of the half-shell function when the eigenchannel has a bound state. The next chapters focus on possible phenomenological forms for the two-body local potential, nuclear three-body forces arising from triple-boson couplings, and concepts such as N-particle transit operators, three-body separable expansion amplitude, the three-body problem with energy-dependent potentials, and the four-body problem. The book also introduces the reader to triton with realistic potentials, backward proton-deuteron scattering, and deep inelastic lepton-nucleon interactions at high energy. This book will benefit physicists, students, and researchers who want to learn about the dynamics of few body systems.
This book is aimed at scientists, technologists, engineers, and undergraduate and graduate students involved in analytical and process biochemistry and biotechnology. It reviews the potentialities of light-emitting reaction associated with the sensor approach.The book introduces the concepts of sensors and biosensors and places bio- and chemi-luminescent sensors in the general context of biosensors. It then briefly describes luminescence phenomena and provides some basic knowledge necessary for understanding and exploiting light-emitting reactions. These luminescence reactions, important from an analytical standpoint, are described. Also the applications of bio- and chemi-luminescence which make use of immobilized reagents are explained. Finally, there is discussion of bio- and chemi-luminescent sensors, most of them including fiber optics.
R.I.G. Hughes explores the theoretical practices that scientists use in doing physics. He offers a critical examination of accounts that notable physicists give of their practices, and investigates the roles of laws, disunities, models and representation, and computer simulation.