In recent years new discoveries have made this an exciting and important field of research. This exhaustive volume presents comprehensive chapters and detailed background information for researchers working with in the field of nuclear mechanics and genome regulation. - Both classic and state-of-the-art methods readily adaptable and designed to last the test of time - Relevant to clinicians and scientists working in a wide range of fields
Intermediate Filament Proteins, the latest volume in the Methods in Enzymology series covers all the intermediate filaments in vertebrates and invertebrates, providing a unique understanding of the multiple different tissue-specific intermediate filaments. This volume also covers the latest methods that are currently being used to study intermediate filament protein function and dynamics. It will be an important companion for any experimentalist interesting in studying this protein family in their cell or organism model system.
"Nuclear envelope (NE) defects have been linked to cancer biology since the mid-1800s, but it was not until the last few years that we have begun to understand these historical links and to realize that there are myriad ways that the NE impacts on tumorigenesis. The NE is a complex double membrane system that encloses the genome while providing structural support through the intermediate filament lamin polymer and regulating protein/ mRNA trafficking and signaling between the nucleus and cytoplasm via the nuclear pore complexes (NPCs). These functions already provide some mechanisms for NE influences on cancer biology but work in the past few years has elucidated many others. Lamins and many recently identified NE transmembrane proteins (NETs) have been now shown to function in DNA repair, regulation of cell cycle and signaling, apoptosis, cell migration in metastasis and nuclear architecture and morphology. This volume presents a comprehensive overview of the wide range of functions recently identified for NE proteins and their relevance in cancer biology, providing molecular mechanisms and evidence of their value as prognostic and diagnostic markers and suggesting new avenues for the treatment of cancer. Indeed some of these recent links are already yielding promising therapies, such as the current clinical trial of selective inhibitors of the nuclear export factor exportin in certain types of leukemia, melanoma and kidney cancer."
No longer simple line drawings on a page, molecular structures can now be viewed in full-figured glory, often in color and even with interactive possibilities. Anatomy of Gene Regulation is the first book to present the parts and processes of gene regulation at the three-dimensional level. Vivid structures of nucleic acids and their companion proteins are revealed in full-color, three-dimensional form. Beginning with a general introduction to three-dimensional structures, the book looks at the organization of the genome, the structure of DNA, DNA replication and transcription, splicing, protein synthesis, and ultimate protein death. Throughout, the text employs a discussion of genetics and structural mechanics. The concise and unique synthesis of information will offer insight into gene regulation, and into the development of methods to interfere with regulation at diseased states. This textbook and its accompanying web site are appropriate for both undergraduate and graduate students in genetics, molecular biology, structural biology, and biochemistry courses.
Nuclear Architecture and Dynamics provides a definitive resource for (bio)physicists and molecular and cellular biologists whose research involves an understanding of the organization of the genome and the mechanisms of its proper reading, maintenance, and replication by the cell. This book brings together the biochemical and physical characteristics of genome organization, providing a relevant framework in which to interpret the control of gene expression and cell differentiation. It includes work from a group of international experts, including biologists, physicists, mathematicians, and bioinformaticians who have come together for a comprehensive presentation of the current developments in the nuclear dynamics and architecture field. The book provides the uninitiated with an entry point to a highly dynamic, but complex issue, and the expert with an opportunity to have a fresh look at the viewpoints advocated by researchers from different disciplines. - Highlights the link between the (bio)chemistry and the (bio)physics of chromatin - Deciphers the complex interplay between numerous biochemical factors at task in the nucleus and the physical state of chromatin - Provides a collective view of the field by a large, diverse group of authors with both physics and biology backgrounds
This textbook aims to describe the fascinating area of eukaryotic gene regulation for graduate students in all areas of the biomedical sciences. Gene expression is essential in shaping the various phenotypes of cells and tissues and as such, regulation of gene expression is a fundamental aspect of nearly all processes in physiology, both in healthy and in diseased states. This pivotal role for the regulation of gene expression makes this textbook essential reading for students of all the biomedical sciences, in order to be better prepared for their specialized disciplines. A complete understanding of transcription factors and the processes that alter their activity is a major goal of modern life science research. The availability of the whole human genome sequence (and that of other eukaryotic genomes) and the consequent development of next-generation sequencing technologies have significantly changed nearly all areas of the biological sciences. For example, the genome-wide location of histone modifications and transcription factor binding sites, such as provided by the ENCODE consortium, has greatly improved our understanding of gene regulation. Therefore, the focus of this book is the description of the post-genome understanding of gene regulation. The purpose of this book is to provide, in a condensed form, an overview on the present understanding of the mechanisms of gene regulation. The authors are not aiming to compete with comprehensive treatises, but rather focus on the essentials. Therefore, the authors have favored a high figure-to-text ratio following the rule stating that “a picture tells more than thousand words”. The content of the book is based on the lecture course, which is given by Prof. Carlberg since 2001 at the University of Eastern Finland in Kuopio. The book is subdivided into 4 sections and 13 chapters. Following the Introduction there are three sections, which take a view on gene regulation from the perspective of transcription factors, chromatin and non-coding RNA, respectively. Besides its value as a textbook, Mechanisms of Gene Regulation will be a useful reference for individuals working in biomedical laboratories.
This book has been designed to help medical students succeed with their histology classes, while using less time on studying the curriculum. The book can both be used on its own or as a supplement to the classical full-curriculum textbooks normally used by the students for their histology classes. Covering the same curriculum as the classical textbooks, from basic tissue histology to the histology of specific organs, this book is formatted and organized in a much simpler and intuitive way. Almost all text is formatted in bullets or put into structured tables. This makes it quick and easy to digest, helping the student get a good overview of the curriculum. It is easy to locate specific information in the text, such as the size of cellular structures etc. Additionally, each chapter includes simplified illustrations of various histological features. The aim of the book is to be used to quickly brush up on the curriculum, e.g. before a class or an exam. Additionally, the book includes guides to distinguish between the different histological tissues and organs that can be presented to students microscopically, e.g. during a histology spot test. This guide lists the specific characteristics of the different histological specimens and also describes how to distinguish a specimen from other similar specimens. For each histological specimen, a simplified drawing and a photomicrograph of the specimen, is presented to help the student recognize the important characteristics in the microscope. Lastly, the book contains multiple “memo boxes” in which parts of the curriculum are presented as easy-to-remember mnemonics.