Nonvolatile Memory Technologies with Emphasis on Flash

Nonvolatile Memory Technologies with Emphasis on Flash

Author: Joe Brewer

Publisher: John Wiley & Sons

Published: 2011-09-23

Total Pages: 766

ISBN-13: 1118211626

DOWNLOAD EBOOK

Presented here is an all-inclusive treatment of Flash technology, including Flash memory chips, Flash embedded in logic, binary cell Flash, and multilevel cell Flash. The book begins with a tutorial of elementary concepts to orient readers who are less familiar with the subject. Next, it covers all aspects and variations of Flash technology at a mature engineering level: basic device structures, principles of operation, related process technologies, circuit design, overall design tradeoffs, device testing, reliability, and applications.


Advances in Non-volatile Memory and Storage Technology

Advances in Non-volatile Memory and Storage Technology

Author: Yoshio Nishi

Publisher: Elsevier

Published: 2014-06-24

Total Pages: 456

ISBN-13: 0857098098

DOWNLOAD EBOOK

New solutions are needed for future scaling down of nonvolatile memory. Advances in Non-volatile Memory and Storage Technology provides an overview of developing technologies and explores their strengths and weaknesses. After an overview of the current market, part one introduces improvements in flash technologies, including developments in 3D NAND flash technologies and flash memory for ultra-high density storage devices. Part two looks at the advantages of designing phase change memory and resistive random access memory technologies. It looks in particular at the fabrication, properties, and performance of nanowire phase change memory technologies. Later chapters also consider modeling of both metal oxide and resistive random access memory switching mechanisms, as well as conductive bridge random access memory technologies. Finally, part three looks to the future of alternative technologies. The areas covered include molecular, polymer, and hybrid organic memory devices, and a variety of random access memory devices such as nano-electromechanical, ferroelectric, and spin-transfer-torque magnetoresistive devices. Advances in Non-volatile Memory and Storage Technology is a key resource for postgraduate students and academic researchers in physics, materials science, and electrical engineering. It is a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials, and portable electronic devices. Provides an overview of developing nonvolatile memory and storage technologies and explores their strengths and weaknesses Examines improvements to flash technology, charge trapping, and resistive random access memory Discusses emerging devices such as those based on polymer and molecular electronics, and nanoelectromechanical random access memory (RAM)


Advances in Non-Volatile Memory and Storage Technology

Advances in Non-Volatile Memory and Storage Technology

Author: Yoshio Nishi

Publisher: Woodhead Publishing

Published: 2017-11-13

Total Pages: 390

ISBN-13: 9780081014189

DOWNLOAD EBOOK

New solutions are needed for future scaling down of nonvolatile memory. Advances in Non-volatile Memory and Storage Technology provides an overview of developing technologies and explores their strengths and weaknesses. After an overview of the current market, part one introduces improvements in flash technologies, including developments in 3D NAND flash technologies and flash memory for ultra-high density storage devices. Part two looks at the advantages of designing phase change memory and resistive random access memory technologies. It looks in particular at the fabrication, properties, and performance of nanowire phase change memory technologies. Later chapters also consider modeling of both metal oxide and resistive random access memory switching mechanisms, as well as conductive bridge random access memory technologies. Finally, part three looks to the future of alternative technologies. The areas covered include molecular, polymer, and hybrid organic memory devices, and a variety of random access memory devices such as nano-electromechanical, ferroelectric, and spin-transfer-torque magnetoresistive devices. Advances in Non-volatile Memory and Storage Technology is a key resource for postgraduate students and academic researchers in physics, materials science, and electrical engineering. It is a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials, and portable electronic devices. Provides an overview of developing nonvolatile memory and storage technologies and explores their strengths and weaknesses Examines improvements to flash technology, charge trapping, and resistive random access memory Discusses emerging devices such as those based on polymer and molecular electronics, and nanoelectromechanical random access memory (RAM)


Nonvolatile Semiconductor Memory Technology

Nonvolatile Semiconductor Memory Technology

Author: William D. Brown

Publisher: Wiley-IEEE Press

Published: 1998

Total Pages: 624

ISBN-13:

DOWNLOAD EBOOK

This comprehensive reference book provides electronics engineers with the technical data and perspective necessary for the intelligent selection, specification, and application of nonvolatile semiconductor memory devices. A "one-stop shopping" tool for the working engineer, this book presents the fundamental aspects of nonvolatile semiconductor memory technologies, devices, reliability, and applications.


Nonvolatile Memory Design

Nonvolatile Memory Design

Author: Hai Li

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 203

ISBN-13: 1439807469

DOWNLOAD EBOOK

The manufacture of flash memory, which is the dominant nonvolatile memory technology, is facing severe technical barriers. So much so, that some emerging technologies have been proposed as alternatives to flash memory in the nano-regime. Nonvolatile Memory Design: Magnetic, Resistive, and Phase Changing introduces three promising candidates: phase-change memory, magnetic random access memory, and resistive random access memory. The text illustrates the fundamental storage mechanism of these technologies and examines their differences from flash memory techniques. Based on the latest advances, the authors discuss key design methodologies as well as the various functions and capabilities of the three nonvolatile memory technologies.


Embedded Flash Memory for Embedded Systems: Technology, Design for Sub-systems, and Innovations

Embedded Flash Memory for Embedded Systems: Technology, Design for Sub-systems, and Innovations

Author: Hideto Hidaka

Publisher: Springer

Published: 2017-09-09

Total Pages: 253

ISBN-13: 3319553062

DOWNLOAD EBOOK

This book provides a comprehensive introduction to embedded flash memory, describing the history, current status, and future projections for technology, circuits, and systems applications. The authors describe current main-stream embedded flash technologies from floating-gate 1Tr, floating-gate with split-gate (1.5Tr), and 1Tr/1.5Tr SONOS flash technologies and their successful creation of various applications. Comparisons of these embedded flash technologies and future projections are also provided. The authors demonstrate a variety of embedded applications for auto-motive, smart-IC cards, and low-power, representing the leading-edge technology developments for eFlash. The discussion also includes insights into future prospects of application-driven non-volatile memory technology in the era of smart advanced automotive system, such as ADAS (Advanced Driver Assistance System) and IoE (Internet of Everything). Trials on technology convergence and future prospects of embedded non-volatile memory in the new memory hierarchy are also described. Introduces the history of embedded flash memory technology for micro-controller products and how embedded flash innovations developed; Includes comprehensive and detailed descriptions of current main-stream embedded flash memory technologies, sub-system designs and applications; Explains why embedded flash memory requirements are different from those of stand-alone flash memory and how to achieve specific goals with technology development and circuit designs; Describes a mature and stable floating-gate 1Tr cell technology imported from stand-alone flash memory products - that then introduces embedded-specific split-gate memory cell technologies based on floating-gate storage structure and charge-trapping SONOS technology and their eFlash sub-system designs; Describes automotive and smart-IC card applications requirements and achievements in advanced eFlash beyond 4 0nm node.


Emerging Memory Technologies

Emerging Memory Technologies

Author: Yuan Xie

Publisher: Springer Science & Business Media

Published: 2013-10-21

Total Pages: 321

ISBN-13: 144199551X

DOWNLOAD EBOOK

This book explores the design implications of emerging, non-volatile memory (NVM) technologies on future computer memory hierarchy architecture designs. Since NVM technologies combine the speed of SRAM, the density of DRAM, and the non-volatility of Flash memory, they are very attractive as the basis for future universal memories. This book provides a holistic perspective on the topic, covering modeling, design, architecture and applications. The practical information included in this book will enable designers to exploit emerging memory technologies to improve significantly the performance/power/reliability of future, mainstream integrated circuits.


Emerging Non-volatile Memory Technologies

Emerging Non-volatile Memory Technologies

Author: Wen Siang Lew

Publisher: Springer Nature

Published: 2021-01-09

Total Pages: 439

ISBN-13: 9811569126

DOWNLOAD EBOOK

This book offers a balanced and comprehensive guide to the core principles, fundamental properties, experimental approaches, and state-of-the-art applications of two major groups of emerging non-volatile memory technologies, i.e. spintronics-based devices as well as resistive switching devices, also known as Resistive Random Access Memory (RRAM). The first section presents different types of spintronic-based devices, i.e. magnetic tunnel junction (MTJ), domain wall, and skyrmion memory devices. This section describes how their developments have led to various promising applications, such as microwave oscillators, detectors, magnetic logic, and neuromorphic engineered systems. In the second half of the book, the underlying device physics supported by different experimental observations and modelling of RRAM devices are presented with memory array level implementation. An insight into RRAM desired properties as synaptic element in neuromorphic computing platforms from material and algorithms viewpoint is also discussed with specific example in automatic sound classification framework.


Materials and Technology for Nonvolatile Memories: Volume 1729

Materials and Technology for Nonvolatile Memories: Volume 1729

Author: Panagiotis Dimitrakis

Publisher: Materials Research Society

Published: 2015-09-09

Total Pages: 0

ISBN-13: 9781605117065

DOWNLOAD EBOOK

Symposium M, 'Materials and Technology for Nonvolatile Memories', was held November 30-December 5 at the 2014 MRS Fall Meeting in Boston, Massachusetts, which was a follow up of previous symposia on nonvolatile memories. Main research areas featured in Symposium M were advanced Flash memories, organic memories, resistive switching memories (ReRAM), magnetoresistive random access memories (MRAM), ferroelectric random access memories (FeRAM), phase-change memories, as well as emerging materials and technologies for nonvolatile memories. In addition, a highly successful one-day tutorial session, 'Emerging Materials and Devices for Nonvolatile Memories', was conducted and included tutorials on ReRAM, polymer/organic materials, MRAM, and Flash memories. This symposium proceedings volume represents the recent advances and related material issues on various kinds of nonvolatile memory technologies. The papers in this volume are categorized according to each type of memory technology and are not in the order of the symposium presentations.