Nonthermal Plasma Surface Modification of Materials

Nonthermal Plasma Surface Modification of Materials

Author: Masaaki Okubo

Publisher: Springer Nature

Published: 2023-12-02

Total Pages: 219

ISBN-13: 9819945062

DOWNLOAD EBOOK

This book describes the fundamentals and applicability of the atmospheric-pressure non-thermal plasma surface modification of materials. Non-thermal plasma modification is an effective procedure for chemical activation. In this book, the principles of non-thermal plasma surface modification and its application to various machine parts are described. By reading this book, technologists from a variety of fields can learn about plasma generation and surface treatment technology, which will assist them in performing advanced procedures. This book also explains the basics of atmospheric-pressure plasma and the principle of plasma treatment in an easy-to-understand manner and also provides examples of the application of atmospheric-pressure plasma surface modification technologies to plastics, glass, polymers, and metals. After reading this book, readers can get the knowledge that researchers need to apply the methodology to meet their own research goals. The book is self-contained in the sense that it spans the divide between the fundamentals and more advanced content regarding applications. Many engineers and graduate students working in this field get many helps.


Non-Thermal Plasma Technology for Polymeric Materials

Non-Thermal Plasma Technology for Polymeric Materials

Author: Sabu Thomas

Publisher: Elsevier

Published: 2018-10-08

Total Pages: 496

ISBN-13: 0128131535

DOWNLOAD EBOOK

Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials and Biomedical Fields provides both an introduction and practical guide to plasma synthesis, modification and processing of polymers, their composites, nancomposites, blends, IPNs and gels. It examines the current state-of-the-art and new challenges in the field, including the use of plasma treatment to enhance adhesion, characterization techniques, and the environmental aspects of the process. Particular attention is paid to the effects on the final properties of composites and the characterization of fiber/polymer surface interactions. This book helps demystify the process of plasma polymerization, providing a thorough grounding in the fundamentals of plasma technology as they relate to polymers. It is ideal for materials scientists, polymer chemists, and engineers, acting as a guide to further research into new applications of this technology in the real world. - Enables materials scientists and engineers to deploy plasma technology for surface treatment, characterization and analysis of polymeric materials - Reviews the state-of-the-art in plasma technology for polymer synthesis and processing - Presents detailed coverage of the most advanced applications for plasma polymerization, particularly in medicine and biomedical engineering, areas such as implants, biosensors and tissue engineering


Nonthermal Plasma Surface Modification of Materials

Nonthermal Plasma Surface Modification of Materials

Author: Masaaki Okubo

Publisher: Springer

Published: 2023-09-21

Total Pages: 0

ISBN-13: 9789819945054

DOWNLOAD EBOOK

This book describes the fundamentals and applicability of the atmospheric-pressure non-thermal plasma surface modification of materials. Non-thermal plasma modification is an effective procedure for chemical activation. In this book, the principles of non-thermal plasma surface modification and its application to various machine parts are described. By reading this book, technologists from a variety of fields can learn about plasma generation and surface treatment technology, which will assist them in performing advanced procedures. This book also explains the basics of atmospheric-pressure plasma and the principle of plasma treatment in an easy-to-understand manner and also provides examples of the application of atmospheric-pressure plasma surface modification technologies to plastics, glass, polymers, and metals. After reading this book, readers can get the knowledge that researchers need to apply the methodology to meet their own research goals. The book is self-contained in the sense that it spans the divide between the fundamentals and more advanced content regarding applications. Many engineers and graduate students working in this field get many helps.


Surface Modification to Improve Properties of Materials

Surface Modification to Improve Properties of Materials

Author: Miran Mozetič

Publisher: MDPI

Published: 2019-04-16

Total Pages: 356

ISBN-13: 3038977969

DOWNLOAD EBOOK

This book contains selected contributions on surface modification to improve the properties of solid materials. The surface properties are tailored either by functionalization, etching, or deposition of a thin coating. Functionalization is achieved by a brief treatment with non-equilibrium gaseous plasma containing suitable radicals that interact chemically with the material surface and thus enable the formation of rather stable functional groups. Etching is performed in order to modify the surface morphology. The etching parameters are selected in such a way that a rich morphology of the surfaces is achieved spontaneously on the sub-micrometer scale, without using masks. The combination of adequate surface morphology and functionalization of materials leads to superior surface properties which are particularly beneficial for the desired response upon incubation with biological matter. Alternatively, the materials are coated with a suitable thin film that is useful in various applications from food to aerospace industries.


Cold Plasma Cancer Therapy

Cold Plasma Cancer Therapy

Author: Michael Keidar

Publisher: Morgan & Claypool Publishers

Published: 2019-04-01

Total Pages: 98

ISBN-13: 1643274341

DOWNLOAD EBOOK

Cold atmospheric plasma (CAP) emerges as a possible new modality for cancer treatment. This book provides a comprehensive introduction into fundamentals of the CAP and plasma devices used in plasma medicine. An analysis of the mechanisms of plasma interaction with cancer and normal cells including description of possible mechanisms of plasma selectivity is included. Recent advances in the field, the primary challenges and future directions are presented.


Biodegradable Green Composites

Biodegradable Green Composites

Author: Susheel Kalia

Publisher: John Wiley & Sons

Published: 2016-02-29

Total Pages: 377

ISBN-13: 1118911091

DOWNLOAD EBOOK

This book comprehensively addresses surface modification of natural fibers to make them more effective, cost-efficient, and environmentally friendly. Topics include the elucidation of important aspects surrounding chemical and green approaches for the surface modification of natural fibers, the use of recycled waste, properties of biodegradable polyesters, methods such as electrospinning, and applications of hybrid composite materials.


Radio-Frequency Capacitive Discharges

Radio-Frequency Capacitive Discharges

Author: Yuri P. Raizer

Publisher: CRC Press

Published: 2017-12-14

Total Pages: 305

ISBN-13: 135141996X

DOWNLOAD EBOOK

The first publication of its kind in the field, this book describes comprehensively and systematically radio-frequency (rf) capacitive gas discharges of intermediate and low pressure and their application to gas laser excitation and to plasma processing. Text presents the physics underlying rf discharges along with techniques for obtaining such discharges, experimental methods and results, and theoretical and numerical modeling findings. Radio-Frequency Capacitive Discharges is written by well-known specialists in the field, authors of many theoretical and experimental works. They provide simple and clear discussions of complicated physical phenomena. A complete review on the state of the art is included. This interesting new book can be used as a textbook for students and postgraduates and as a comprehensive guidebook by specialists.


Atmospheric Pressure Plasma for Surface Modification

Atmospheric Pressure Plasma for Surface Modification

Author: Rory A. Wolf

Publisher: John Wiley & Sons

Published: 2012-11-08

Total Pages: 268

ISBN-13: 1118547551

DOWNLOAD EBOOK

This Book's focus and intent is to impart an understanding of the practical application of atmospheric plasma for the advancement of a wide range of current and emerging technologies. The primary key feature of this book is the introduction of over thirteen years of practical experimental evidence of successful surface modifications by atmospheric plasma methods. It offers a handbook-based approach for leveraging and optimizing atmospheric plasma technologies which are currently in commercial use. It also offers a complete treatment of both basic plasma physics and industrial plasma processing with the intention of becoming a primary reference for students and professionals. The reader will learn the mechanisms which control and operate atmospheric plasma technologies and how these technologies can be leveraged to develop in-line continuous processing of a wide variety of substrates. Readers will gain an understanding of specific surface modification effects by atmospheric plasmas, and how to best characterize those modifications to optimize surface cleaning and functionalization for adhesion promotion. The book also features a series of chapters written to address practical surface modification effects of atmospheric plasmas within specific application markets, and a commercially-focused assessment of those effects.


Nonthermal Plasmas for Materials Processing

Nonthermal Plasmas for Materials Processing

Author: Jörg Florian Friedrich

Publisher: John Wiley & Sons

Published: 2022-07-15

Total Pages: 805

ISBN-13: 1119364760

DOWNLOAD EBOOK

NONTHERMAL PLASMAS FOR MATERIALS PROCESSING This unique book covers the physical and chemical aspects of plasma chemistry with polymers and gives new insights into the interaction of physics and chemistry of nonthermal plasmas and their applications in materials science for physicists and chemists. The properties and characteristics of plasmas, elementary (collision) processes in the gas phase, plasma surface interactions, gas discharge plasmas and technical plasma sources, atmospheric plasmas, plasma diagnostics, polymers and plasmas, plasma polymerization, post-plasma processes, plasma, and wet-chemical processing, plasma-induced generation of functional groups, and the chemical reactions on these groups along with a few exemplary applications are discussed in this comprehensive but condensed state-of-the-art book on plasma chemistry and its dependence on plasma physics. While plasma physics, plasma chemistry, and polymer science are often handled separately, the aim of the authors is to harmoniously join the physics and chemistry of low-pressure and atmospheric-pressure plasmas with polymer surface chemistry and polymerization and to compare such chemistry with classic chemistry. Readers will find in these chapters Interaction of plasma physics and chemistry in plasmas and at the surface of polymers; Explanation and interpretation of physical and chemical mechanisms on plasma polymerization and polymer surface modification; Introduction of modern techniques in plasma diagnostics, surface analysis of solids, and special behavior of polymers on exposure to plasmas; Discussion of the conflict of energy-rich plasma species with permanent energy supply and the much lower binding energies in polymers and alternatives to avoid random polymer decomposition Technical applications such as adhesion, cleaning, wettability, textile modification, coatings, films, etc. New perspectives are explained about how to use selective and mild processes to allow post-plasma chemistry on non-degraded polymer surfaces. Audience Physicists, polymer chemists, materials scientists, industrial engineers in biomedicine, coatings, printing, etc.


Plasma Catalysis

Plasma Catalysis

Author: Annemie Bogaerts

Publisher: MDPI

Published: 2019-04-02

Total Pages: 248

ISBN-13: 3038977500

DOWNLOAD EBOOK

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.