Univariate nonlinear regression; Univariate nonlinear regression: special situations; A unified asymptotic theory of nonlinear models with regression structure; Univariate nonlinear regression: asymptotic theory; Multivariate nonlinear regression; Nonlinear simultaneus equations models; A unified asymptotic theory for dynamic nonlinear models.
Statistical Tools for Nonlinear Regression presents methods for analyzing data. It has been expanded to include binomial, multinomial and Poisson non-linear models. The examples are analyzed with the free software nls2 updated to deal with the new models included in the second edition. The nls2 package is implemented in S-PLUS and R. Several additional tools are included in the package for calculating confidence regions for functions of parameters or calibration intervals, using classical methodology or bootstrap.
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of Nonlinear Regression "A very good book and an important one in that it is likely to become a standard reference for all interested in nonlinear regression; and I would imagine that any statistician concerned with nonlinear regression would want a copy on his shelves." –The Statistician "Nonlinear Regression also includes a reference list of over 700 entries. The compilation of this material and cross-referencing of it is one of the most valuable aspects of the book. Nonlinear Regression can provide the researcher unfamiliar with a particular specialty area of nonlinear regression an introduction to that area of nonlinear regression and access to the appropriate references . . . Nonlinear Regression provides by far the broadest discussion of nonlinear regression models currently available and will be a valuable addition to the library of anyone interested in understanding and using such models including the statistical researcher." –Mathematical Reviews
Better experimental design and statistical analysis make for more robust science. A thorough understanding of modern statistical methods can mean the difference between discovering and missing crucial results and conclusions in your research, and can shape the course of your entire research career. With Applied Statistics, Barry Glaz and Kathleen M. Yeater have worked with a team of expert authors to create a comprehensive text for graduate students and practicing scientists in the agricultural, biological, and environmental sciences. The contributors cover fundamental concepts and methodologies of experimental design and analysis, and also delve into advanced statistical topics, all explored by analyzing real agronomic data with practical and creative approaches using available software tools. IN PRESS! This book is being published according to the “Just Published” model, with more chapters to be published online as they are completed.
This text provides an introduction to the use of nonlinear models in medical statistics. It is a practical text rather than a theoretical one and assumes a basic knowledge of statistical modelling and of generalized linear models. It begins with a general introduction to nonlinear models, comparing them to generalized linear models, descriptions of data handling and formula definition and a summary of the principal types of nonlinear regression formulae. There is an emphasis on techniques for non-normal data. Following chapters provide detailed examples of applications in various areas of medicine, epidemiology, clinical trials, quality of life, pharmokinetics, pharmacodynamics, assays and formulations, and moleuclar genetics.
Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
Provides a presentation of the theoretical, practical, and computational aspects of nonlinear regression. There is background material on linear regression, including a geometrical development for linear and nonlinear least squares.
Select the Optimal Model for Interpreting Multivariate Data Introduction to Multivariate Analysis: Linear and Nonlinear Modeling shows how multivariate analysis is widely used for extracting useful information and patterns from multivariate data and for understanding the structure of random phenomena. Along with the basic concepts of various procedures in traditional multivariate analysis, the book covers nonlinear techniques for clarifying phenomena behind observed multivariate data. It primarily focuses on regression modeling, classification and discrimination, dimension reduction, and clustering. The text thoroughly explains the concepts and derivations of the AIC, BIC, and related criteria and includes a wide range of practical examples of model selection and evaluation criteria. To estimate and evaluate models with a large number of predictor variables, the author presents regularization methods, including the L1 norm regularization that gives simultaneous model estimation and variable selection. For advanced undergraduate and graduate students in statistical science, this text provides a systematic description of both traditional and newer techniques in multivariate analysis and machine learning. It also introduces linear and nonlinear statistical modeling for researchers and practitioners in industrial and systems engineering, information science, life science, and other areas.
This book describes the state of the art in nonlinear dynamical reconstruction theory. The chapters are based upon a workshop held at the Isaac Newton Institute, Cambridge University, UK, in late 1998. The book's chapters present theory and methods topics by leading researchers in applied and theoretical nonlinear dynamics, statistics, probability, and systems theory. Features and topics: * disentangling uncertainty and error: the predictability of nonlinear systems * achieving good nonlinear models * delay reconstructions: dynamics vs. statistics * introduction to Monte Carlo Methods for Bayesian Data Analysis * latest results in extracting dynamical behavior via Markov Models * data compression, dynamics and stationarity Professionals, researchers, and advanced graduates in nonlinear dynamics, probability, optimization, and systems theory will find the book a useful resource and guide to current developments in the subject.