Nonlinear Phenomena in Physics and Biology

Nonlinear Phenomena in Physics and Biology

Author: Richard H. Enns

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 609

ISBN-13: 146844106X

DOWNLOAD EBOOK

The Advanced Study Institute (ASI) on Nonlinear Phenomena-in Physics and Biology was held at the Banff Centre, Banff, Alberta, Canada, from 17 - 29 August, 1980. The Institute was made possible through funding by the North Atlantic Treaty Organization (who sup plied the major portion of the financial aid), the National Research and Engineering Council of Canada, and Simon Fraser University. The availability of the Banff Centre was made possible through the co sponsorship (with NATO) of the ASI by the Canadian Association of Physicists. 12 invited lecturers and 82 other participants attended the Institute. Except for two lectures on nonlinear waves by Norman Zabusky, which were omitted because it was felt that they already had been exhaustively treated in the available literature, this volume contains the entire text of the invited lectures. In addition, short reports on some of the contributed talks have also been included. The rationale for the ASI and this resulting volume was that many of the hardest problems and most interesting phenomena being studied by scientists today ar.e nonlinear in nature. The nonlinear models involved often span several different disciplines, °a simple example being the Volterra-type model in population dynamics which has its analogue in nonlinear optics and plasma physics (the 3-wave problem), in the discussion of the social behavior of animals, and in biological competition and selection at the molecular level.


Nonlinear Phenomena at Phase Transitions and Instabilities

Nonlinear Phenomena at Phase Transitions and Instabilities

Author: Tormod Riste

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 479

ISBN-13: 1468441272

DOWNLOAD EBOOK

This NATO Advanced Study Institute, held in Geilo between March 29th and April 9th 1981, was the sixth in a series devoted to the subject of phase transitions and instabilities. The present institute was intended to provide a forum for discussion of the importance of nonlinear phenomena associated with instabilities in systems as seemingly disparate as ferroelectrics and rotating buckets of oil. Ten years ago, at the first Geilo school, the report of a central peak in the fluctuation spectrum of SrTi0 close to its 3 106 K structural phase transition demonstrated that the simple soft-mode theory of such transitions was incomplete. The missing ingredient was the essential nonlinearity of the system. Parti cipants at this year's Geilo school heard assessments of a decade of experimental and theoretical effort which has been expended to elucidate the nature of this nonlinearity. The importance of order ed clusters and the walls which bound them was stressed in this con text. A specific type of wall, the soliton, was discussed by a number of speakers. New experimental results which purport to demonstrate the existence of solitons in a one-dimensional ferromagnet were presented. A detailed discussion was given of the role of solitons in transport phenomena in driven multistable systems, typified by a sine-Gordon chain.


Metal Hydrides

Metal Hydrides

Author: Gust Bambakidis

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 384

ISBN-13: 1475758146

DOWNLOAD EBOOK

In the last five years, the study of metal hydrides has ex panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the application of metal hydrides to solar/hydrogen energy conver sion schemes in land areas where solar energy has promise as a primary energy source. In addition to the lectures, several seminars were given which treated topics of special interest in greater detail.


Phase Transitions Cargèse 1980

Phase Transitions Cargèse 1980

Author: J. Levy

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 465

ISBN-13: 1461333474

DOWNLOAD EBOOK

The understanding of phase transitions has long been a fundamental problem of statistical mechanics. It has made spectac ular progress during the last few years, largely because of the ideas of K.G. Wilson, in applying to an apparently quite different domain the methods of the renormalization group, which had been developped in the framework of the quantum theory of fields. The ability of these theoretical methods to lead to very precise predictions has, ~n turn, stimulated in the last few years more refined experiments in different areas. We now have entered a period where the theoretical results yielded by the renormalization group approach are suffi ciently precise and can be compared with those of the traditional method of high temperature series expansion on lattices, and with the experimental data. Although very similar, the results coming from the renormalization group and high temperature analysis seemed to indicate systematic discrepancies between the continuous field theory and lattice models. It was therefore important to appreciate the reliability of the predictions coming from both theoretical schemes, and to compare them to the latest experimental results. We think that this Cargese Summer Institute has been very successful 1 in this respect. Indeed, leading experts in the field, both experimentalists and theoreticians, have gathered and presented detailed analysis of the present situation. In particular, B.G. Nickel has produced longer high temperature series which seem to indicate that the discrepancies between series and renormalization group results have been previously overestimated.


Artificial Particle Beams in Space Plasma Studies

Artificial Particle Beams in Space Plasma Studies

Author: Bjorn Grandal

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 688

ISBN-13: 1468442236

DOWNLOAD EBOOK

These proceedings are based upon the invited review papers and the research notes presented at the NATO Advanced Research Institute on "Artificial Particle Beams in Space Plasma Studies" held at Geilo, Norway April 21-26, 1981. In the last decade a number of research groups have employed artificial particle beams both from sounding rockets and satellites in order to study various ionospheric and magnetospheric phenomena. However, the artificial particle beams used in this manner have given rise to a number of puzzling effects. Thus, instead of being just a probe for studying the ambient magnetosphere, the artificial particle beams have presented a rich variety of plasma physics problems, in parti~ular various discharge phenomena, which in themselves are worthy of a careful study. The experimental studies in space using artificial particle beams have in turn given rise to both theore tical and laboratory studies. In the laboratory experi ments special attention has been paid to the problem of creating spacelike conditions in the vacuum chamber. The theoretical. work has addressed the question of beam plasma-neutral interaction with emphasis on the wave generation and the modified energy distributions of the charged particles. Numerical simulations have been used extensively. With the advent of the Space Shuttle in which several artificial particle beam experiments are planned for the 1980's, there is a growing interest in such experiments. Furthermore, there is a need for coordinating these studies, both in space and in the laboratory.


Microlocal Analysis and Nonlinear Waves

Microlocal Analysis and Nonlinear Waves

Author: Michael Beals

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 205

ISBN-13: 1461391369

DOWNLOAD EBOOK

This IMA Volume in Mathematics and its Applications MICROLOCAL ANALYSIS AND NONLINEAR WAVES is based on the proceedings of a workshop which was an integral part of the 1988- 1989 IMA program on "Nonlinear Waves". We thank Michael Beals, Richard Melrose and Jeffrey Rauch for organizing the meeting and editing this proceedings volume. We also take this opportunity to thank the National Science Foundation whose financial support made the workshop possible. A vner Friedman Willard Miller, Jr. PREFACE Microlocal analysis is natural and very successful in the study of the propagation of linear hyperbolic waves. For example consider the initial value problem Pu = f E e'(RHd), supp f C {t ;::: O} u = 0 for t


Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems

Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems

Author: Sow Hsin Chen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 909

ISBN-13: 1468440616

DOWNLOAD EBOOK

This Advanced Study Institute was held at \-lellesley College, Wellesley, MA. , from 3 to 12 August 1980. It followed by four years the second "Capri ~,chool on Photon Correlation Spectroscopy". During the intervening period there had been many new applications of dynamic light scattering techniques to the study of systems whose properties depend either on collective molecular interactions or on the formation or activity of supramo1ecu1ar structures. Con sequently, emphasis at this conference was on light scattering studies of subjects such as dynamical correlations in dense polymer solutions, phase transitions in gels, spinodal decomposition of binary fluids, Benard instabilities in nonequilibrium fluids, the formation of micelles and phospholipid vesicles, and movements of the molecular assemblies of muscle tissue. The instructional pro gramme also included tutorial lectures on two complementary spec troscopic techniques which have benefited from dramatic advances in instrumentation, these being small angle X-ray (SAXS) and small angle neutron (SANS) scattering. Strong cold neutron and synchro tron X-ray sources have become available, and data now can be acquired rapidly with newly developed position-sensitive detectors. Several reviews of recent applications of SAXS and SANS were also provided. The organizers of the ASI hoped to provide a forum for theoreticians and experimentalists to assess advances in fields which, although related, were sufficiently different that a great deal of unfamiliar information could be communicated. The order ing of the papers in this volume closely approximates that of the talks presented at the Advanced Study Institute.


Atomic and Molecular Collision Theory

Atomic and Molecular Collision Theory

Author: Franco A. Gianturco

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 508

ISBN-13: 1461333121

DOWNLOAD EBOOK

Until recently, the field of atomic and molecular collisions was left to a handful of practitioners who essentially explored it as a branch of atomic physics and gathered their experimental re sults mainly from spectroscopy measurements in bulk. But in the past ten years or so, all of this has dramatically changed, and we are now witnessing the rapid growth of a large body of research that encompasses the simplest atoms as well as the largest mole cules, that looks at a wide variety of phenomena well outside purely spectroscopic observation, and that finds applications in an unexpectedly broad range of physico-chemical and physical pro cesses. The latter are in turn surprisingly close to very important sectors of applied research, such as the modeling of molecular lasers, the study of isotope separation techniques, and the energy losses in confined plasmas, to mention just a few of them. As a consequence of this healthy state of affairs, greatly diversified research pathways have developed; however, their specialized problems are increasingly at risk of being viewed in isolation, although they are part of a major and extended branch of physics or chemistry. This is particularly true when it comes to the theory of this work -- where well-established methods and models of one subfield are practically unknown to researchers in other subfields -- and, consequently, the danger of wasteful duplication arising is quite real.


Moving Finite Element Method

Moving Finite Element Method

Author: Maria do Carmo Coimbra

Publisher: CRC Press

Published: 2016-11-30

Total Pages: 195

ISBN-13: 1498723896

DOWNLOAD EBOOK

This book focuses on process simulation in chemical engineering with a numerical algorithm based on the moving finite element method (MFEM). It offers new tools and approaches for modeling and simulating time-dependent problems with moving fronts and with moving boundaries described by time-dependent convection-reaction-diffusion partial differential equations in one or two-dimensional space domains. It provides a comprehensive account of the development of the moving finite element method, describing and analyzing the theoretical and practical aspects of the MFEM for models in 1D, 1D+1d, and 2D space domains. Mathematical models are universal, and the book reviews successful applications of MFEM to solve engineering problems. It covers a broad range of application algorithm to engineering problems, namely on separation and reaction processes presenting and discussing relevant numerical applications of the moving finite element method derived from real-world process simulations.