Nonadiabatic Transition: Concepts, Basic Theories And Applications (2nd Edition)

Nonadiabatic Transition: Concepts, Basic Theories And Applications (2nd Edition)

Author: Hiroki Nakamura

Publisher: World Scientific

Published: 2012-01-13

Total Pages: 515

ISBN-13: 9814462438

DOWNLOAD EBOOK

Nonadiabatic transition is a highly multidisciplinary concept and phenomenon, constituting a fundamental mechanism of state and phase changes in various dynamical processes of physics, chemistry and biology, such as molecular dynamics, energy relaxation, chemical reaction, and electron and proton transfer. Control of molecular processes by laser fields is also an example of time-dependent nonadiabatic transition.In this new edition, the original chapters are updated to facilitate enhanced understanding of the concept and applications. Three new chapters — comprehension of nonadiabatic chemical dynamics, control of chemical dynamics, and manifestation of molecular functions — are also added.


Introduction To Nonadiabatic Dynamics

Introduction To Nonadiabatic Dynamics

Author: Hiroki Nakamura

Publisher: World Scientific

Published: 2019-09-26

Total Pages: 394

ISBN-13: 9811203431

DOWNLOAD EBOOK

Nonadiabatic transition is a highly multi-disciplinary concept and phenomenon, constituting a fundamental mechanism of state and phase changes in various dynamical processes of physics, chemistry and biology. This book is intended to be readable to a broad audience so that they can deepen their understanding of the basic concepts of both time-independent and time-dependent nonadiabatic transitions. Quantum mechanically intriguing phenomena such as complete reflection and nonadiabatic tunneling are emphasized. The Zhu-Nakamura theory that can deal with non-negligible classically forbidden transitions is explained. Furthermore, by controlling nonadiabatic transitions induced by an external field such as laser, designing chemical reaction dynamics as we desire is shown to be theoretically possible.


Advances in Quantum Chemistry

Advances in Quantum Chemistry

Author:

Publisher: Elsevier

Published: 2023-09-20

Total Pages: 400

ISBN-13: 0443186642

DOWNLOAD EBOOK

Advances in Quantum Chemistry, Volume 88 presents the latest ongoing research at the forefront of Electronic structure theory. Chapters in the updated release include Spin-constrained Hartree-Fock and the generator coordinate method for the 2-site Hubbard model, Analytical evaluation of Hylleraas-CI Coulomb and Hybrid two-center Integrals over Slater orbitals, Hartree-Fock-Roothaan Theory of Molecular Compton Profiles Via Position Space Method, Analysis of Research Trend on the Molecular Integrals Over Slater Type Orbitals, An efficient approximation for accelerating convergence of numerical power series, Results for the 1D-Schroedinger equation, The aims and objectives of algebraic molecular orbital theory, and much more. - Includes new theoretical methods - Provides state-of-the art electron correlation, methods and effects - Covers the challenge of excited electronic states


Quantum Mechanical Tunneling in Chemical Physics

Quantum Mechanical Tunneling in Chemical Physics

Author: Hiroki Nakamura

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 225

ISBN-13: 1466507322

DOWNLOAD EBOOK

Quantum mechanical tunneling plays important roles in a wide range of natural sciences, from nuclear and solid-state physics to proton transfer and chemical reactions in chemistry and biology. Responding to the need for further understanding of multidimensional tunneling, the authors have recently developed practical methods that can be applied to


New Horizons in Computational Chemistry Software

New Horizons in Computational Chemistry Software

Author: Michael Filatov

Publisher: Springer Nature

Published: 2022-07-30

Total Pages: 316

ISBN-13: 3031076583

DOWNLOAD EBOOK

This volume presents the current status of software development in the field of computational and theoretical chemistry and gives an overview of the emerging trends. The challenges of maintaining the legacy codes and their adaptation to the rapidly growing hardware capabilities and the new programming environments are surveyed in a series of topical reviews written by the core developers and maintainers of the popular quantum chemistry and molecular dynamics programs. Special emphasis is given to new computational methodologies and practical aspects of their implementation and application in the computational chemistry codes. Modularity of the computational chemistry software is an emerging concept that enables to bypass the development and maintenance bottleneck of the legacy software and to customize the software using the best available computational procedures implemented in the form of self-contained modules. Perspectives on modular design of the computer programs for modeling molecular electronic structure, non-adiabatic dynamics, kinetics, as well as for data visualization are presented by the researchers actively working in the field of software development and application. This volume is of interest to quantum and computational chemists as well as experimental chemists actively using and developing computational software for their research. Chapters "MLatom 2: An Integrative Platform for Atomistic Machine Learning” and “Evolution of the Automatic Rhodopsin Modeling (ARM) Protocol" are available open access under a CC BY 4.0 License via link.springer.com.


The DV-Xα Molecular-Orbital Calculation Method

The DV-Xα Molecular-Orbital Calculation Method

Author: Tomohiko Ishii

Publisher: Springer

Published: 2014-11-06

Total Pages: 358

ISBN-13: 331911185X

DOWNLOAD EBOOK

This multi-author contributed volume contains chapters featuring the development of the DV-Xα method and its application to a variety of problems in Materials Science and Spectroscopy written by leaders of the respective fields. The volume contains a Foreword written by the Chairs of Japanese and Korea DV-X alpha Societies. This book is aimed at individuals working in Quantum Chemistry.


Computer Simulations in Condensed Matter: From Materials to Chemical Biology. Volume 2

Computer Simulations in Condensed Matter: From Materials to Chemical Biology. Volume 2

Author: Mauro Ferrario

Publisher: Springer

Published: 2007-04-16

Total Pages: 608

ISBN-13: 3540352848

DOWNLOAD EBOOK

This extensive and comprehensive collection of lectures by world-leading experts in the field introduces and reviews all relevant computer simulation methods and their applications in condensed matter systems. Volume 2 offers surveys on numerical experiments carried out for a great number of systems, ranging from materials sciences to chemical biology, including supercooled liquids, spin glasses, colloids, polymers, liquid crystals, biological membranes and folding proteins.


Molecular Spectroscopy and Quantum Dynamics

Molecular Spectroscopy and Quantum Dynamics

Author: Roberto Marquardt

Publisher: Elsevier

Published: 2020-09-18

Total Pages: 376

ISBN-13: 0128172355

DOWNLOAD EBOOK

Molecular Spectroscopy and Quantum Dynamics, an exciting new work edited by Professors Martin Quack and Roberto Marquardt, contains comprehensive information on the current state-of-the-art experimental and theoretical methods and techniques used to unravel ultra-fast phenomena in atoms, molecules and condensed matter, along with future perspectives on the field. - Contains new insights into the quantum dynamics and spectroscopy of electronic and nuclear motion - Presents the most recent developments in the detection and interpretation of ultra-fast phenomena - Includes a discussion of the importance of these phenomena for the understanding of chemical reaction dynamics and kinetics in relation to molecular spectra and structure


Attosecond Molecular Dynamics

Attosecond Molecular Dynamics

Author: Marc J J Vrakking

Publisher: Royal Society of Chemistry

Published: 2018-08-31

Total Pages: 512

ISBN-13: 1788015134

DOWNLOAD EBOOK

Attosecond science is a new and rapidly developing research area in which molecular dynamics are studied at the timescale of a few attoseconds. Within the past decade, attosecond pump–probe spectroscopy has emerged as a powerful experimental technique that permits electron dynamics to be followed on their natural timescales. With the development of this technology, physical chemists have been able to observe and control molecular dynamics on attosecond timescales. From these observations it has been suggested that attosecond to few-femtosecond timescale charge migration may induce what has been called “post-Born-Oppenheimer dynamics”, where the nuclei respond to rapidly time-dependent force fields resulting from transient localization of the electrons. These real-time observations have spurred exciting new advances in the theoretical work to both explain and predict these novel dynamics. This book presents an overview of current theoretical work relevant to attosecond science written by theoreticians who are presently at the forefront of its development. It is a valuable reference work for anyone working in the field of attosecond science as well as those studying the subject.


The Non-Ergodic Nature of Internal Conversion

The Non-Ergodic Nature of Internal Conversion

Author: Thomas Scheby Kuhlman

Publisher: Springer Science & Business Media

Published: 2013-05-23

Total Pages: 138

ISBN-13: 3319003860

DOWNLOAD EBOOK

This thesis investigates the transitions from one electronically excited state to another. Such processes - the fastest of events in chemistry - can be studied with femtosecond resolution, and Thomas S. Kuhlman approaches the question both with experimental and theoretical methods. His approach contributes to explain processes of high importance to all scientific fields concerned with the interaction between light and matter: the deactivation of the electronically excited states after excitation. Thomas S. Kuhlman concludes in this thesis that the electronic transition proceeds before the entire set of available degrees of freedom are active - 'It is as simple as that' !