This volume presents a new mathematical theory of generalized functions, more general than Distribution Theory, giving a rigorous mathematical sense to any product of a finite number of distributions and to heuristic computations of Quantum Field Theory. Although the physical motivations are emphasized, the book is also addressed to mathematicians with no knowledge of physics. This work opens a new domain of research in both pure and applied mathematics.
This book presents recent and very elementary developments of a theory of multiplication of distributions in the field of explicit and numerical solutions of systems of PDEs of physics (nonlinear elasticity, elastoplasticity, hydrodynamics, multifluid flows, acoustics). The prerequisites are kept to introductory calculus level so that the book remains accessible at the same time to pure mathematicians (as a smoothand somewhat heuristic introdcution to this theory) and to applied mathematicians, numerical engineers and theoretical physicists (as a tool to treat problems involving products of distributions).
Over the past few years a certain shift of focus within the theory of algebras of generalized functions (in the sense of J. F. Colombeau) has taken place. Originating in infinite dimensional analysis and initially applied mainly to problems in nonlinear partial differential equations involving singularities, the theory has undergone a change both in in ternal structure and scope of applicability, due to a growing number of applications to questions of a more geometric nature. The present book is intended to provide an in-depth presentation of these develop ments comprising its structural aspects within the theory of generalized functions as well as a (selective but, as we hope, representative) set of applications. This main purpose of the book is accompanied by a number of sub ordinate goals which we were aiming at when arranging the material included here. First, despite the fact that by now several excellent mono graphs on Colombeau algebras are available, we have decided to give a self-contained introduction to the field in Chapter 1. Our motivation for this decision derives from two main features of our approach. On the one hand, in contrast to other treatments of the subject we base our intro duction to the field on the so-called special variant of the algebras, which makes many of the fundamental ideas of the field particularly transpar ent and at the same time facilitates and motivates the introduction of the more involved concepts treated later in the chapter.
Questions regarding the interplay of nonlinearity and the creation and propagation of singularities arise in a variety of fields-including nonlinear partial differential equations, noise-driven stochastic partial differential equations, general relativity, and geometry with singularities. A workshop held at the Erwin-Schrödinger International Institute for Mathematical Physics in Vienna investigated these questions and culminated in this volume of invited papers from experts in the fields of nonlinear partial differential equations, structure theory of generalized functions, geometry and general relativity, stochastic partial differential equations, and nonstandard analysis. The authors provide the latest research relevant to work in partial differential equations, mathematical physics, and nonlinear analysis. With a focus on applications, this books provides a compilation of recent approaches to the problem of singularities in nonlinear models. The theory of differential algebras of generalized functions serves as the central theme of the project, along with its interrelations with classical methods.
This Proceedings consists of a collection of papers presented at the International Conference "Generalized functions, convergence structures and their applications" held from June 23-27, 1987 in Dubrovnik, Yugoslavia (GFCA-87): 71 participants from 21 countr~es from allover the world took part in the Conference. Proceedings reflects the work of the Conference. Plenary lectures of J. Burzyk, J. F. Colombeau, W. Gahler, H. Keiter, H. Komatsu, B. Stankovic, H. G. Tillman, V. S. Vladimirov provide an up-to-date account of the cur rent state of the subject. All these lectures, except H. G. Tillman's, are published in this volume. The published communications give the contemporary problems and achievements in the theory of generalized functions, in the theory of convergence structures and in their applications, specially in the theory of partial differential equations and in the mathematical physics. New approaches to the theory of generalized functions are presented, moti vated by concrete problems of applications. The presence of articles of experts in mathematical physics contributed to this aim. At the end of the volume one can find presented open problems which also point to further course of development in the theory of generalized functions and convergence structures. We are very grateful to Mr. Milan Manojlovic who typed these Proce edings with extreme skill and diligence and with inexhaustible patience.
The author's previous book `New Generalized Functions and Multiplication of Distributions' (North-Holland, 1984) introduced `new generalized functions' in order to explain heuristic computations of Physics and to give a meaning to any finite product of distributions. The aim here is to present these functions in a more direct and elementary way. In Part I, the reader is assumed to be familiar only with the concepts of open and compact subsets of R&eegr;, of C∞ functions of several real variables and with some rudiments of integration theory. Part II defines tempered generalized functions, i.e. generalized functions which are, in some sense, increasing at infinity no faster than a polynomial (as well as all their partial derivatives). Part III shows that, in this setting, the partial differential equations have new solutions. The results obtained show that this setting is perfectly adapted to the study of nonlinear partial differential equations, and indicate some new perspectives in this field.
This book gives an excellent and up-to-date overview on the convergence and joint progress in the fields of Generalized Functions and Fourier Analysis, notably in the core disciplines of pseudodifferential operators, microlocal analysis and time-frequency analysis. The volume is a collection of chapters addressing these fields, their interaction, their unifying concepts and their applications and is based on scientific activities related to the International Association for Generalized Functions (IAGF) and the ISAAC interest groups on Pseudo-Differential Operators (IGPDO) and on Generalized Functions (IGGF), notably on the longstanding collaboration of these groups within ISAAC.
Results from the now-classical distribution theory involving convolution and Fourier transformation are extended to cater for Colombeau's generalized functions. Indications are given how these particular generalized functions can be used to investigate linear equations and pseudo differential operators. Furthermore, applications are also given to problems with nonregular data.
This book provides a simple introduction to a nonlinear theory of generalized functions introduced by J.F. Colombeau, which gives a meaning to any multiplication of distributions. This theory extends from pure mathematics (it presents a faithful generalization of the classical theory of C? functions and provides a synthesis of most existing multiplications of distributions) to physics (it permits the resolution of ambiguities that appear in products of distributions), passing through the theory of partial differential equations both from the theoretical viewpoint (it furnishes a concept of weak solution of pde's leading to existence-uniqueness results in many cases where no distributional solution exists) and the numerical viewpoint (it introduces new and efficient methods developed recently in elastoplasticity, hydrodynamics and acoustics). This text presents basic concepts and results which until now were only published in article form. It is in- tended for mathematicians but, since the theory and applications are not dissociated it may also be useful for physicists and engineers. The needed prerequisites for its reading are essentially reduced to the classical notions of differential calculus and the theory of integration over n-dimensional euclidean spaces.