Inflammation is a central mechanism in many neurological diseases, including stroke, multiple sclerosis, and brain trauma as well as meningitis and contributes to the generation of pain. We are now beginning to understand the impact of the immune system on different nervous system functions and diseases, ranging from damage through tolerance to modulation and repair.This book discusses some of the more common neuro-inflammatory diseases. Topics covered include multiple sclerosis, optic neuritis and Susac syndrome. - Comprehensive review of the latest developments in neuroinflammation - Includes contributions from leading authorities
"The dementia challenge is the largest health effort of the times we live in. The whole society has to move to a realization of the significance of prioritization to make an attempt in the direction of mental health promotion and dementia risk reduction. New priorities for research are needed to go far beyond the usual goal of constructing a disease course-modifying medication. Moreover, a full empowerment and engagement of men and women living with dementia and their caregivers, overcoming stigma and discrimination should be promoted. The common efforts and the final aim will have to be the progress of a ''dementia-constructive'' world, where people with dementia can take advantage of equal opportunities."--Provided by publisher
There is now considerable genetic evidence that the type 4 allele of the apolipoprotein E gene is a major susceptibility factor associated with late-onset Alzheimer's disease, the common form of the disease defined as starting after sixty years of age. The role of apolipoprotein E in normal brain metabolism and in the pathogenesis of Alzheimer's disease are new and exciting avenues of research. This book, written by the most outstanding scientists in this new filed, is the first presentation of results concerning the implications of apolipoprotein E on the genetics, cell biology, neuropathology, biochemistry, and therapeutic management of Alzheimer's disease.
Impairment of energy metabolism is a hallmark of brain aging and several neurodegenerative diseases, such as the Alzheimer’s disease (AD). Age- and disease-related hypometabolism is commonly associated with oxidative stress and they are both regarded as major contributors to the decline in synaptic plasticity and cognition. Neuroinflammatory changes, entailing microglial activation and elevated expression of inflammatory cytokines, also correlate with age-related cognitive decline. It is still under debate whether the mitochondrial dysfunction-induced metabolic deficits or the microglia activation-mediated neuroinflammation is the initiator of the cognitive changes in aging and AD. Nevertheless, multiple lines of evidence support the notion that mitochondrial dysfunction and chronic inflammation exacerbate each other, and these mechanistic diversities have cellular redox dysregulation as a common denominator. This research topic focuses on the role of a metabolic-inflammatory axis encompassing the bioenergetic activity, brain inflammatory responses and their redox regulation in healthy brain aging and neurodegenerative diseases. Dynamic interactions among these systems are reviewed in terms of their causative or in-tandem occurrence and how the systemic environment, –e.g., insulin resistance, diabetes, and systemic inflammation–, impacts on brain function.
Neurofibrillary tangles (NFTs) composed of intracellular aggregates of tau protein are a key neuropathological feature of Alzheimer’s Disease (AD) and other neurodegenerative diseases, collectively termed tauopathies. The abundance of NFTs has been reported to correlate positively with the severity of cognitive impairment in AD. However, accumulating evidences derived from studies of experimental models have identified that NFTs themselves may not be neurotoxic. Now, many of tau researchers are seeking a “toxic” form of tau protein. Moreover, it was suggested that a “toxic” tau was capable to seed aggregation of native tau protein and to propagate in a prion-like manner. However, the exact neurotoxic tau species remain unclear. Because mature tangles seem to be non-toxic component, “tau oligomers” as the candidate of “toxic” tau have been investigated for more than one decade. In this topic, we will discuss our consensus of “tau oligomers” because the term of “tau oligomers” [e.g. dimer (disulfide bond-dependent or independent), multimer (more than dimer), granular (definition by EM or AFM) and maybe small filamentous aggregates] has been used by each researchers definition. From a biochemical point of view, tau protein has several unique characteristics such as natively unfolded conformation, thermo-stability, acid-stability, and capability of post-translational modifications. Although tau protein research has been continued for a long time, we are still missing the mechanisms of NFT formation. It is unclear how the conversion is occurred from natively unfolded protein to abnormally mis-folded protein. It remains unknown how tau protein can be formed filaments [e.g. paired helical filament (PHF), straight filament and twisted filament] in cells albeit in vitro studies confirmed tau self-assembly by several inducing factors. Researchers are still debating whether tau oligomerization is primary event rather than tau phosphorylation in the tau pathogenesis. Inhibition of either tau phosphorylation or aggregation has been investigated for the prevention of tauopathies, however, it will make an irrelevant result if we don’t know an exact target of neurotoxicity. It is a time to have a consensus of definition, terminology and methodology for the identification of “tau oligomers”.
This volume presents recent data on the latest achievements in new and emerging technologies for biomarkers and for innovations in their assessment. The chapters cover topics such as activation of microglia and macrophages in neurodegenerative diseases; oxidative stress and cellular dysfunction in neurodegenerative diseases; TSPO PET imaging as a biomarker of neuroinflammation in neurodegenerative disorders; and imaging biomarkers in Huntington's disease and amyotrophic lateral sclerosis. In the Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Cutting-edge and comprehensive, Neurodegenerative Diseases Biomarkers: Towards Translating Research to Clinical Practice is a valuable resource for both experimental and clinical experts in the field of neurodegenerative diseases who are looking to expand their knowledge of novel biomarkers in different types of neurodegenerative diseases.
Focuses on the effects of natural products and their active components on brain function and neurodegenerative disease prevention. Phytochemicals such as alkaloids, terpenes, flavanoids, isoflavones, saponins etc are known to possess protective activity against many neurological diseases. The molecular mechanisms behind the curative effects rely mainly on the action of phytonutrients on distinct signaling pathways associated with protein folding and neuro-inflammation. The diverse array of bioactive nutrients present in these natural products plays a pivotal role in prevention and cure of various neurodegenerative diseases, disorders, or insults, such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, traumatic brain injury, and other neuronal dysfunctions. However, the use of these antioxidants in the management of neurodegenerative conditions has so far been not well understood. This is a comprehensive collection addressing the effects on the brain of natural products and edible items such as reservatrol, curcumin, gingerol, fruits, vegetables, nuts, and marine products.
Oxidative stress is the result of an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of toxic reactive oxygen species. Brain cells are continuously exposed to reactive oxygen species generated by oxidative metabolism, and in certain pathological conditions defense mechanisms against oxygen radicals may be weakened and/or overwhelmed. DNA is a potential target for oxidative damage, and genomic damage can contribute to neuropathogenesis. It is important therefore to identify tools for the quantitative analysis of DNA damage in models on neurological disorders. This book presents detailed information on various neurodegenerative disorders and their connection with oxidative stress. This information will provide clinicians with directions to treat these disorders with appropriate therapy and is also of vital importance for the drug industries for the design of new drugs for treatment of degenerative disorders.* Contains the latest information on the subject of neurodegenerative disorders* Reflects on various factors involved in degeneration and gives suggestions for how to tackle these problems
Presents a thorough examination of the unifying principles from the subcellular to the systems and clinical levels; Identifies common themes among molecular biology, genetics, physiology, pathology, biomarkers, behavior, and treatment strategies that are shared between neurodegenerative diseases; Enables better care of patients and help build collaboration across researchers in multiple specializations that could help advance future insights and facilitate novel therapies and enhancing basic scientific understanding of these diseases to a new generation.