This volume consists of a collection of tutorial papers by leading experts on statistical and probabilistic aspects of chaos and networks, in particular neural networks. While written for the non-expert, they are intended to bring the reader up to the forefront of knowledge and research in the subject areas concerned. The papers, which contain extensive references to the literature, can separately or in various combinations serve as bases for short- or full-length courses, at graduate or more advanced levels. The papers are directed not only to mathematical statisticians but also to students and researchers in related fields of biology, engineering, geology, physics and probability.
This volume consists of the revised versions of most of the main papers given at the first Seminaire Europeen de Statistique on Chaos and Neural Networks and at the subsequent Study Institute on other types ofnetworks, held at Sandbjerg/Aarhus University from 25 April to 7 May 1992. The aim of the Seminaire Europeen de Statistique and the Study Institute, in which about 35 young statisticians from all over Europe participated, was to provide talented young researchers in statistics with an opportunity to get quickly to the forefront of knowledge and research in the statistical aspects of chaos and networks. Accordingly the papers in this volume all have a tutorial character and it is hoped that they will be found broadly useful. The first Seminaire Europeen de Statistique was organized by O.E. Barndorff-Nielsen, Aarbus University; D.R. Cox, Nuffield College, Oxford; Jens Ledet Jensen, Aarbus University; Wilfrid S. Kendall, University of Warwick; and Gerard Letac, Universite Paul Sabatier, Toulouse. It is hoped in the future to arrange further Seminaires Europeens de Statistique, each one devoted to one or two research topics of great current interest and activity. The Seminaire Europeen de Statistique and Study Institute was supported by the Directorate General for Science and Development of the European Communities and by the Danish Research Acad emy, and their support is gratefully acknowledged.
Learn to use modeling and simulation methods to attack real-world problems, from physics to engineering, from life sciences to process engineering Reviews of the first edition (2009): "Perfectly fits introductory modeling courses [...] and is an enjoyable reading in the first place. Highly recommended [...]" Zentralblatt MATH, European Mathematical Society, 2009 "This book differs from almost all other available modeling books in that [the authors address] both mechanistic and statistical models as well as 'hybrid' models. [...] The modeling range is enormous." SIAM Society of Industrial and Applied Mathematics, USA, 2011 This completely revised and substantially extended second edition answers the most important questions in the field of modeling: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? What kind of mathematical problems appear and how can these be efficiently solved using professional free of charge open source software? The book addresses undergraduates and practitioners alike. Although only basic knowledge of calculus and linear algebra is required, the most important mathematical structures are discussed in sufficient detail, ranging from statistical models to partial differential equations and accompanied by examples from biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical, and process engineering. About 200 pages of additional material include a unique chapter on virtualization, Crash Courses on the data analysis and programming languages R and Python and on the computer algebra language Maxima, many new methods and examples scattered throughout the book, an update of all software-related procedures, and a comprehensive book software providing templates for typical modeling tasks in thousands of code lines. The book software includes GmLinux, an operating system specifically designed for this book providing preconfigured and ready-to-use installations of OpenFOAM, Salome, FreeCAD/CfdOF workbench, ParaView, R, Maxima/wxMaxima, Python, Rstudio, Quarto/Markdown and other free of charge open source software used in the book.
This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
Computational intelligence techniques are gaining momentum in the medical prognosis and diagnosis. This volume presents advanced applications of machine intelligence in medicine and bio-medical engineering. Applied methods include knowledge bases, expert systems, neural networks, neuro-fuzzy systems, evolvable systems, wavelet transforms, and specific internet applications. The volume is written in view of explaining to the practitioner the fundamental issues related to computational intelligence paradigms and to offer a fast and friendly-managed introduction to the most recent methods based on computer intelligence in medicine.
This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.
Neural networks are one of the most popular and powerful classes of machine learning algorithms. In quantitative finance neural networks are often used for time-series forecasting, constructing proprietary indicators, algorithmic trading, securities classification and credit risk modeling. They have also been used to construct stochastic process models and price derivatives. Despite their usefulness, neural networks tend to have a bad reputation because their performance is "temperamental". In my opinion, this can be attributed to poor network design owing to misconceptions regarding how neural networks work. This book discusses every aspect of the artificial neural network in very interactive, practical and simple way.
Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions. In A neural network approach to fluid quantity measurement in dynamic environments, effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network based signal classification system is also investigated. Results obtained from the investigation are compared with traditionally used statistical averaging methods, and proves that the neural network based measurement system can produce highly accurate fluid quantity measurements in a dynamic environment. Although in this case a capacitive sensor was used to demonstrate measurement system this methodology is valid for all types of electronic sensors. The approach demonstrated in A neural network approach to fluid quantity measurement in dynamic environments can be applied to a wide range of fluid quantity measurement applications in the automotive, naval and aviation industries to produce accurate fluid level readings. Students, lecturers, and experts will find the description of current research about accurate fluid level measurement in dynamic environments using neural network approach useful.
The Handbook of Neural Computation is a practical, hands-on guide to the design and implementation of neural networks used by scientists and engineers to tackle difficult and/or time-consuming problems. The handbook bridges an information pathway between scientists and engineers in different disciplines who apply neural networks to similar probl