On June 26, 2017, the Forum on Regenerative Medicine hosted a public workshop in Washington, DC, titled Navigating the Manufacturing Process and Ensuring the Quality of Regenerative Medicine Therapies in order to examine and discuss the challenges, opportunities, and best practices associated with defining and measuring the quality of cell and tissue products and raw materials in the research and manufacturing of regenerative medicine therapies. The goal of the workshop was to learn from existing examples of the manufacturing of early-generation regenerative medicine products and to address how progress could be made in identifying and measuring critical quality attributes. The workshop also addressed the challenges of designing and adhering to standards as a way of helping those who are working to scale up processes and techniques from a research laboratory to the manufacturing environment. This publication summarizes the presentations and discussions from the workshop.
This new edition presents a fully-updated and expanded look at current Good Manufacturing Practice (cGMP) for cell therapy products. It provides a complete discussion of facility design and operation including details specific to cord blood banking, cell processing, vector production and qualification of a new facility. Several chapters cover facility infrastructure including cleaning and maintenance, vendor qualification, writing a Standard Operating Procedure, staff training, and process validation. The detailed and invaluable product information covers topics like labelling, release and administration, transportation and shipment, et al. Further chapters cover relevant topics like writing and maintaining investigational new drug applications, support opportunities in North America and the European Union, commercial cell processing and quality testing services, and financial considerations for academic GMP facilities. A chapter on future directions rounds out Cell Therapy: cGMP Facilities and Manufacturing making it essential reading for any cell therapy professional involved in the development, use, or management of this type of facility.
This volume of the Springer book series Advances in Experimental Medicine and Biology covers potency assays, one of the most complex yet fundamental evaluations that critically influence stem cell regenerative medicine. Developing potency assays for cell-based medicinal products comes with numerous challenges due to the highly specialised nature of the application and purpose. This book provides the reader with the knowledge necessary to understand issues governing the successful development of potency assays, highlighting an international outlook of how the various challenges raised are being managed. Stakeholders concerned with potency assay development range from patient and clinician to contract research organisations, small and medium enterprise, regulatory authorities and even politicians. The value of potency assays is poised to increase given the inevitable watershed as early-stage clinical trials addressing safety progress to trials testing efficacy. Contributors from clinical, academic, industrial and regulatory sectors establish a broad point of view for guidance and timely debate. Potency assays require extensive collaboration across disciplines and sectors, as well as compromise and the authors aim to constructively address the many key aspects involved. Potency assays provide a quantitative measure of the biological activity of advanced therapy medicinal products (ATMPs) and thus are required for their market authorization. As the pace of ATMP development accelerates, the need to develop specific, accurate, and robust potency assays for each product is also accelerating. The volume Potency Assays for Stem Cell Advanced Therapy Medicinal Products presents a broad outlook on the development, quality attributes, and implementation of potency assays for ATMPs. The first few chapters introduce a nuanced historical perspective on the science of potency assay development, describe specific quality attributes of an idealized potency assay, indicate pitfalls associated with developing such assays for ATMPs, and review guidance recommended by regulatory authorities on assay suitability for product approval. Subsequent chapters highlight efforts to develop potency assays for specific ATMPs, including skeletal stem cells, mesenchymal stromal cells, extracellular vesicles, CAR T-cells, and discuss emerging technologies/platforms for potency assay design. The volume concludes with a chapter reviewing potency assays used for the release of commercial ATMP products, which amalgamates information contained in previous chapters. Overall, the knowledge contributed from leading authorities in both academia and industry is an ideal resource for technicians, scientists, clinicians, process engineers, and regulators working with ATMPs. —Donald G. Phinney, PhD Professor, Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology
One of the essential characteristics of living beings is the explosion of variety in their forms that is intrinsically linked to the diversity of the environments they have adapted to. This book, the result of collaboration between international specialists, analyzes the multiplicity of these morphologies. It explores the origin of forms, their role in defining living things, and the relationship between form and function. It exposes the role of genes and epigenetics and examines the forms of bacteria, protists and plants. The Explosion of Life Forms also studies the memory of animals and their sensory processes, the forms of robots (built in the image of living things), and medical technologies aimed at restoring damaged living forms. Finally, this work questions a common principle of construction in the diversity of forms, as well as the idea of an abandonment of the form, a possible hidden defect of some modern philosophies.
This book summarizes the NATO Advanced Research Workshop (ARW) on “Nanoengineered Systems for Regenerative Medicine” that was organized under the auspices of the NATO Security through Science Program. I would like to thank NATO for supporting this workshop via a grant to the co-directors. The objective of ARW was to explore the various facets of regenerative me- cine and to highlight role of the “the nano-length scale” and “nano-scale systems” in defining and controlling cell and tissue environments. The development of novel tissue regenerative strategies require the integration of new insights emerging from studies of cell-matrix interactions, cellular signalling processes, developmental and systems biology, into biomaterials design, via a systems approach. The chapters in the book, written by the leading experts in their respective disciplines, cover a wide spectrum of topics ranging from stem cell biology, developmental biology, ce- matrix interactions, and matrix biology to surface science, materials processing and drug delivery. We hope the contents of the book will provoke the readership into developing regenerative medicine paradigms that combine these facets into cli- cally translatable solutions. This NATO meeting would not have been successful without the timely help of Dr. Ulrike Shastri, Sanjeet Rangarajan and Ms. Sabine Benner, who assisted in the organization and implementation of various elements of this meeting. Thanks are also due Dr. Fausto Pedrazzini and Ms. Alison Trapp at NATO HQ (Brussels, Belgium). The commitment and persistence of Ms.
Stem cells offer tremendous promise for advancing health and medicine. Whether being used to replace damaged cells and organs or else by supporting the body's intrinsic repair mechanisms, stem cells hold the potential to treat such debilitating conditions as Parkinson's disease, diabetes, and spinal cord injury. Clinical trials of stem cell treatments are under way in countries around the world, but the evidence base to support the medical use of stem cells remains limited. Despite this paucity of clinical evidence, consumer demand for treatments using stem cells has risen, driven in part by a lack of available treatment options for debilitating diseases as well as direct-to-consumer advertising and public portrayals of stem cell-based treatments. Clinics that offer stem cell therapies for a wide range of diseases and conditions have been established throughout the world, both in newly industrialized countries such as China, India, and Mexico and in developed countries such as the United States and various European nations. Though these therapies are often promoted as being established and effective, they generally have not received stringent regulatory oversight and have not been tested with rigorous trials designed to determine their safety and likely benefits. In the absence of substantiated claims, the potential for harm to patients - as well as to the field of stem cell research in general - may outweigh the potential benefits. To explore these issues, the Institute of Medicine, the National Academy of Sciences, and the International Society for Stem Cell Research held a workshop in November 2013. "Stem Cell Therapies" summarizes the workshop. Researchers, clinicians, patients, policy makers, and others from North America, Europe, and Asia met to examine the global pattern of treatments and products being offered, the range of patient experiences, and options to maximize the well-being of patients, either by protecting them from treatments that are dangerous or ineffective or by steering them toward treatments that are effective. This report discusses the current environment in which patients are receiving unregulated stem cell offerings, focusing on the treatments being offered and their risks and benefits. The report considers the evidence base for clinical application of stem cell technologies and ways to assure the quality of stem cell offerings.
In this book, experts in the field express their well-reasoned opinions on a range of complex, clinically relevant issues across the full spectrum of cell and gene therapies with the aim of providing trainee and practicing hematologists, including hematopoietic transplant physicians, with information that is relevant to clinical practice and ongoing research. Each chapter focuses on a particular topic, and the concise text is supported by numerous working tables, algorithms, and figures. Whenever appropriate, guidance is provided regarding the availability of potentially high-impact clinical trials. The rapid evolution of cell and gene therapies is giving rise to numerous controversies that need to be carefully addressed. In meeting this challenge, this book will appeal to all residents, fellows, and faculty members responsible for the care of hematopoietic cell transplant patients. It will also offer a robust, engaging tool to aid vital activities in the daily work of every hematology and oncology trainee.
This Volume of the series Cardiac and Vascular Biology offers a comprehensive and exciting, state-of-the-art work on the current options and potentials of cardiac regeneration and repair. Several techniques and approaches have been developed for heart failure repair: direct injection of cells, programming of scar tissue into functional myocardium, and tissue-engineered heart muscle support. The book introduces the rationale for these different approaches in cell-based heart regeneration and discusses the most important considerations for clinical translation. Expert authors discuss when, why, and how heart muscle can be salvaged. The book represents a valuable resource for stem cell researchers, cardiologists, bioengineers, and biomedical scientists studying cardiac function and regeneration.
World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolution, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wearable sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manufacturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individuals. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frameworks that advance progress.