Multivariate Statistical Analysis

Multivariate Statistical Analysis

Author: Parimal Mukhopadhyay

Publisher: World Scientific Publishing Company

Published: 2008-11-25

Total Pages: 568

ISBN-13: 9813107111

DOWNLOAD EBOOK

This textbook presents a classical approach to some techniques of multivariate analysis in a simple and transparent manner. It offers clear and concise development of the concepts; interpretation of the output of the analysis; and criteria for selection of the methods, taking into account the strengths and weaknesses of each. With its roots in matrix algebra, for which a separate chapter has been added as an appendix, the book includes both data-oriented techniques and a reasonable coverage of classical methods supplemented by comments about robustness and general practical applicability. It also illustrates the methods of numerical calculations at various stages.This self-contained book is ideal as an advanced textbook for graduate students in statistics and other disciplines like social, biological and physical sciences. It will also be of benefit to professional statisticians.The author is a former Professor of the Indian Statistical Institute, India.


Multivariate Statistical Methods

Multivariate Statistical Methods

Author: Bryan F.J. Manly

Publisher: CRC Press

Published: 2016-11-03

Total Pages: 227

ISBN-13: 1498728995

DOWNLOAD EBOOK

Multivariate Statistical Methods: A Primer provides an introductory overview of multivariate methods without getting too deep into the mathematical details. This fourth edition is a revised and updated version of this bestselling introductory textbook. It retains the clear and concise style of the previous editions of the book and focuses on examples from biological and environmental sciences. The major update with this edition is that R code has been included for each of the analyses described, although in practice any standard statistical package can be used. The original idea with this book still applies. This was to make it as short as possible and enable readers to begin using multivariate methods in an intelligent manner. With updated information on multivariate analyses, new references, and R code included, this book continues to provide a timely introduction to useful tools for multivariate statistical analysis.


Introduction to Multivariate Statistical Analysis in Chemometrics

Introduction to Multivariate Statistical Analysis in Chemometrics

Author: Kurt Varmuza

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 328

ISBN-13: 1420059491

DOWNLOAD EBOOK

Using formal descriptions, graphical illustrations, practical examples, and R software tools, Introduction to Multivariate Statistical Analysis in Chemometrics presents simple yet thorough explanations of the most important multivariate statistical methods for analyzing chemical data. It includes discussions of various statistical methods, such as


Modern Multivariate Statistical Techniques

Modern Multivariate Statistical Techniques

Author: Alan J. Izenman

Publisher: Springer Science & Business Media

Published: 2009-03-02

Total Pages: 757

ISBN-13: 0387781897

DOWNLOAD EBOOK

This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.


Advanced and Multivariate Statistical Methods

Advanced and Multivariate Statistical Methods

Author: Craig A. Mertler

Publisher: Taylor & Francis

Published: 2021-11-29

Total Pages: 351

ISBN-13: 1000480305

DOWNLOAD EBOOK

Advanced and Multivariate Statistical Methods, Seventh Edition provides conceptual and practical information regarding multivariate statistical techniques to students who do not necessarily need technical and/or mathematical expertise in these methods. This text has three main purposes. The first purpose is to facilitate conceptual understanding of multivariate statistical methods by limiting the technical nature of the discussion of those concepts and focusing on their practical applications. The second purpose is to provide students with the skills necessary to interpret research articles that have employed multivariate statistical techniques. Finally, the third purpose of AMSM is to prepare graduate students to apply multivariate statistical methods to the analysis of their own quantitative data or that of their institutions. New to the Seventh Edition All references to SPSS have been updated to Version 27.0 of the software. A brief discussion of practical significance has been added to Chapter 1. New data sets have now been incorporated into the book and are used extensively in the SPSS examples. All the SPSS data sets utilized in this edition are available for download via the companion website. Additional resources on this site include several video tutorials/walk-throughs of the SPSS procedures. These "how-to" videos run approximately 5–10 minutes in length. Advanced and Multivariate Statistical Methods was written for use by students taking a multivariate statistics course as part of a graduate degree program, for example in psychology, education, sociology, criminal justice, social work, mass communication, and nursing.


Essentials of Multivariate Data Analysis

Essentials of Multivariate Data Analysis

Author: Neil H. Spencer

Publisher: CRC Press

Published: 2013-12-17

Total Pages: 186

ISBN-13: 1466584793

DOWNLOAD EBOOK

Since most datasets contain a number of variables, multivariate methods are helpful in answering a variety of research questions. Accessible to students and researchers without a substantial background in statistics or mathematics, Essentials of Multivariate Data Analysis explains the usefulness of multivariate methods in applied research. Unlike m


An Introduction to Applied Multivariate Analysis with R

An Introduction to Applied Multivariate Analysis with R

Author: Brian Everitt

Publisher: Springer Science & Business Media

Published: 2011-04-23

Total Pages: 284

ISBN-13: 1441996508

DOWNLOAD EBOOK

The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.


Multivariate Statistical Methods

Multivariate Statistical Methods

Author: György Terdik

Publisher: Springer Nature

Published: 2021-10-26

Total Pages: 424

ISBN-13: 3030813924

DOWNLOAD EBOOK

This book presents a general method for deriving higher-order statistics of multivariate distributions with simple algorithms that allow for actual calculations. Multivariate nonlinear statistical models require the study of higher-order moments and cumulants. The main tool used for the definitions is the tensor derivative, leading to several useful expressions concerning Hermite polynomials, moments, cumulants, skewness, and kurtosis. A general test of multivariate skewness and kurtosis is obtained from this treatment. Exercises are provided for each chapter to help the readers understand the methods. Lastly, the book includes a comprehensive list of references, equipping readers to explore further on their own.


Multivariate Statistics:

Multivariate Statistics:

Author: Wolfgang Härdle

Publisher: Springer Science & Business Media

Published: 2007-07-27

Total Pages: 367

ISBN-13: 0387707840

DOWNLOAD EBOOK

The authors have cleverly used exercises and their solutions to explore the concepts of multivariate data analysis. Broken down into three sections, this book has been structured to allow students in economics and finance to work their way through a well formulated exploration of this core topic. The first part of this book is devoted to graphical techniques. The second deals with multivariate random variables and presents the derivation of estimators and tests for various practical situations. The final section contains a wide variety of exercises in applied multivariate data analysis.