Topics in Multivariate Approximation and Interpolation

Topics in Multivariate Approximation and Interpolation

Author: Kurt Jetter

Publisher: Elsevier

Published: 2005-11-15

Total Pages: 357

ISBN-13: 0080462049

DOWNLOAD EBOOK

This book is a collection of eleven articles, written by leading experts and dealing with special topics in Multivariate Approximation and Interpolation. The material discussed here has far-reaching applications in many areas of Applied Mathematics, such as in Computer Aided Geometric Design, in Mathematical Modelling, in Signal and Image Processing and in Machine Learning, to mention a few. The book aims at giving a comprehensive information leading the reader from the fundamental notions and results of each field to the forefront of research. It is an ideal and up-to-date introduction for graduate students specializing in these topics, and for researchers in universities and in industry. - A collection of articles of highest scientific standard - An excellent introduction and overview of recent topics from multivariate approximation - A valuable source of references for specialists in the field - A representation of the state-of-the-art in selected areas of multivariate approximation - A rigorous mathematical introduction to special topics of interdisciplinary research


Multivariate Polynomial Approximation

Multivariate Polynomial Approximation

Author: Manfred Reimer

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 361

ISBN-13: 3034880952

DOWNLOAD EBOOK

This book introduces general theory by presenting the most important facts on multivariate interpolation, quadrature, orthogonal projections and their summation, all treated under a constructive view, and embedded in the theory of positive linear operators. On this background, the book builds the first comprehensive introduction to the theory of generalized hyperinterpolation. Several parts of the book are based on rotation principles, which are presented in the beginning of the book.


Interpolation and Approximation by Polynomials

Interpolation and Approximation by Polynomials

Author: George M. Phillips

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 325

ISBN-13: 0387216820

DOWNLOAD EBOOK

In addition to coverage of univariate interpolation and approximation, the text includes material on multivariate interpolation and multivariate numerical integration, a generalization of the Bernstein polynomials that has not previously appeared in book form, and a greater coverage of Peano kernel theory than is found in most textbooks. There are many worked examples and each section ends with a number of carefully selected problems that extend the student's understanding of the text. The author is well known for his clarity of writing and his many contributions as a researcher in approximation theory.


Spline Functions and Multivariate Interpolations

Spline Functions and Multivariate Interpolations

Author: Borislav D. Bojanov

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 287

ISBN-13: 940158169X

DOWNLOAD EBOOK

Spline functions entered Approximation Theory as solutions of natural extremal problems. A typical example is the problem of drawing a function curve through given n + k points that has a minimal norm of its k-th derivative. Isolated facts about the functions, now called splines, can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J. Favard, L. Tschakaloff. However, the Theory of Spline Functions has developed in the last 30 years by the effort of dozens of mathematicians. Recent fundamental results on multivariate polynomial interpolation and multivari ate splines have initiated a new wave of theoretical investigations and variety of applications. The purpose of this book is to introduce the reader to the theory of spline functions. The emphasis is given to some new developments, such as the general Birkoff's type interpolation, the extremal properties of the splines and their prominant role in the optimal recovery of functions, multivariate interpolation by polynomials and splines. The material presented is based on the lectures of the authors, given to the students at the University of Sofia and Yerevan University during the last 10 years. Some more elementary results are left as excercises and detailed hints are given.


Interpolation and Approximation with Splines and Fractals

Interpolation and Approximation with Splines and Fractals

Author: Peter Robert Massopust

Publisher:

Published: 2010

Total Pages: 344

ISBN-13:

DOWNLOAD EBOOK

This textbook is intended to supplement the classical theory of uni- and multivariate splines and their approximation and interpolation properties with those of fractals, fractal functions, and fractal surfaces. This synthesis will complement currently required courses dealing with these topics and expose the prospective reader to some new and deep relationships. In addition to providing a classical introduction to the main issues involving approximation and interpolation with uni- and multivariate splines, cardinal and exponential splines, and their connection to wavelets and multiscale analysis, which comprises the first half of the book, the second half will describe fractals, fractal functions and fractal surfaces, and their properties. This also includes the new burgeoning theory of superfractals and superfractal functions. The theory of splines is well-established but the relationship to fractal functions is novel. Throughout the book, connections between these two apparently different areas will be exposed and presented. In this way, more options are given to the prospective reader who will encounter complex approximation and interpolation problems in real-world modeling. Numerous examples, figures, and exercises accompany the material.


Multivariate Approximation

Multivariate Approximation

Author: V. Temlyakov

Publisher: Cambridge University Press

Published: 2018-07-19

Total Pages: 551

ISBN-13: 1108428754

DOWNLOAD EBOOK

Self-contained presentation of multivariate approximation from classical linear approximation to contemporary nonlinear approximation.


Multivariate Splines

Multivariate Splines

Author: Charles K. Chui

Publisher: SIAM

Published: 1988-01-01

Total Pages: 192

ISBN-13: 0898712262

DOWNLOAD EBOOK

Subject of multivariate splines presented from an elementary point of view; includes many open problems.


Scattered Data Approximation

Scattered Data Approximation

Author: Holger Wendland

Publisher: Cambridge University Press

Published: 2004-12-13

Total Pages: 346

ISBN-13: 9781139456654

DOWNLOAD EBOOK

Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, complete introduction into this subject. It concentrates on truly meshless methods such as radial basis functions, moving least squares, and partitions of unity. The book starts with an overview on typical applications of scattered data approximation, coming from surface reconstruction, fluid-structure interaction, and the numerical solution of partial differential equations. It then leads the reader from basic properties to the current state of research, addressing all important issues, such as existence, uniqueness, approximation properties, numerical stability, and efficient implementation. Each chapter ends with a section giving information on the historical background and hints for further reading. Complete proofs are included, making this perfectly suited for graduate courses on multivariate approximation and it can be used to support courses in computer-aided geometric design, and meshless methods for partial differential equations.


Advances in Multivariate Approximation

Advances in Multivariate Approximation

Author: Werner Haußmann

Publisher: Wiley-VCH

Published: 1999-11-12

Total Pages: 344

ISBN-13:

DOWNLOAD EBOOK

This volume deals with main results of the 3rd International Conference on Multivariate Approximation, organized by the University of Dortmund. Special emphasis is put on the following topics: Interpolation and approximation on spheres and balls, approximation by solutions of differential equations, construction of node systems, scattered data techniques.


Multivariate Approximation and Splines

Multivariate Approximation and Splines

Author: Günther Nürnberger

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 329

ISBN-13: 3034888716

DOWNLOAD EBOOK

This book contains the refereed papers which were presented at the interna tional conference on "Multivariate Approximation and Splines" held in Mannheim, Germany, on September 7-10,1996. Fifty experts from Bulgaria, England, France, Israel, Netherlands, Norway, Poland, Switzerland, Ukraine, USA and Germany participated in the symposium. It was the aim of the conference to give an overview of recent developments in multivariate approximation with special emphasis on spline methods. The field is characterized by rapidly developing branches such as approximation, data fit ting, interpolation, splines, radial basis functions, neural networks, computer aided design methods, subdivision algorithms and wavelets. The research has applications in areas like industrial production, visualization, pattern recognition, image and signal processing, cognitive systems and modeling in geology, physics, biology and medicine. In the following, we briefly describe the contents of the papers. Exact inequalities of Kolmogorov type which estimate the derivatives of mul the paper of BABENKO, KOFANovand tivariate periodic functions are derived in PICHUGOV. These inequalities are applied to the approximation of classes of mul tivariate periodic functions and to the approximation by quasi-polynomials. BAINOV, DISHLIEV and HRISTOVA investigate initial value problems for non linear impulse differential-difference equations which have many applications in simulating real processes. By applying iterative techniques, sequences of lower and upper solutions are constructed which converge to a solution of the initial value problem.