Das Werk beschreibt die Optimierung eines prognostischen molekularbiologischen Tests für die Brustkrebs-Diagnose und -Therapieentscheidung. Im Rahmen der Arbeit wurde die Zahl der Reaktionsräume für Polymerasekettenreaktionen (PCR) durch die Optimierung vom Multiplexen derart reduziert, dass parallele und kosteneffizientere Analysen möglich wurden.
Inhaltsangabe:Introduction: Breast Cancer: Cancer describes a group of various diseases, where cells start changing their molecular structure and begin to grow and to supersede normal cells. Cancer is induced by numerous different elicitors, which finally all lead to an interference of the genetically regulated balance between cell cycle and apoptosis. Although every organ in the human body can be afflicted with cancer, there are significant differences in frequency relating amongst others to age, sex, geographic region and personal habits. In the industrialized countries, breast cancer is the leading cause of death for women at the age between 30 and 60 years. With estimated 636.000 incident cases in the developed countries and 514.000 in the developing countries, breast cancer is the most prevalent cancer type among woman worldwide. Once detected, the cancer is classified based upon pathological characterizations of the tumor or a biopsy and the lymph nodes. A clinical way of characterizing the tumor is the TNM-classification, which describes the size of the tumor (T), the number of affected lymph nodes (N) and the existence of distant metastases (M). The histological classification characterizes the carcinoma according to its structural and cellular appearance and the amitosis rate leading to a grading from 1 to 3. An immuno-histological examination provides information about the estrogen- and the progesterone-receptor- and about the Her-2/neu-status. Breast cancer is a very heterogeneous disease. There are basic classifications that are unquestioned, even today. Recent studies confirmed the need to determine well known markers (i.e. estrogen (ER) and progesterone (PR) receptor status or HER2 status), but the large variety of subtypes and the corresponding different molecular pattern impede a uniform treatment. Although already today other factors than anatomical classifications are being taken into consideration, there exists a need for further biological markers to assist the physician in charge with his evaluation. Beside the diagnostic recognition, the choice of appropriate therapy and the prediction of prognosis are goals that should be reached in order to prevent early stage cancer patients from therapies that provide minimal benefit but reduce their quality of life by intense adverse reactions. RNA Expression Profiling and Prediction: Already today there are numerous genes associated with breast cancer occurrence, therapy [...]
This new volume updates the reader on selected areas of targeted therapy in breast cancer, with special emphasis on chemoprevention strategies, drug resistance, biomarkers, combination chemotherapy, angiogenesis inhibition and pharmacogenomics in the context of clinical efficacy. This selected review of targeted therapies will guide the reader on effective treatment as part of an integrated programme of patient management.
This important book provides up-to-date information on a series of topical issues relating to the approach to minimal residual disease in breast cancer patients. It first explains how the study of minimal residual disease and circulating and disseminated tumor cells (CTCs/DTCs) can assist in the understanding of breast cancer metastasis. A series of chapters then discuss the various technologies available for the detection and characterization of CTCs and DTCs, pinpointing their merits and limitations. Detailed consideration is given to the relevance of CTCs and DTCs, and their detection, to clinical research and practice. The role of other blood-based biomarkers is also addressed, and the closing chapters debate the challenges facing drug and biomarker co-development and the use of CTCs for companion diagnostic development. This book will be of interest and assistance to all who are engaged in the modern management of breast cancer.
Presenting the latest molecular diagnostic techniques in one comprehensive volume The molecular diagnostics landscape has changed dramatically since the last edition of Molecular Microbiology: Diagnostic Principles and Practice in 2011. With the spread of molecular testing and the development of new technologies and their opportunities, laboratory professionals and physicians more than ever need a resource to help them navigate this rapidly evolving field. Editors David Persing and Fred Tenover have brought together a team of experienced researchers and diagnosticians to update this third edition comprehensively, to present the latest developments in molecular diagnostics in the support of clinical care and of basic and clinical research, including next-generation sequencing and whole-genome analysis. These updates are provided in an easy-to-read format and supported by a broad range of practical advice, such as determining the appropriate type and quantity of a specimen, releasing and concentrating the targets, and eliminating inhibitors. Molecular Microbiology: Diagnostic Principles and Practice Presents the latest basic scientific theory underlying molecular diagnostics Offers tested and proven applications of molecular diagnostics for the diagnosis of infectious diseases, including point-of-care testing Illustrates and summarizes key concepts and techniques with detailed figures and tables Discusses emerging technologies, including the use of molecular typing methods for real-time tracking of infectious outbreaks and antibiotic resistance Advises on the latest quality control and quality assurance measures Explores the increasing opportunities and capabilities of information technology Molecular Microbiology: Diagnostic Principles and Practice is a textbook for molecular diagnostics courses that can also be used by anyone involved with diagnostic test selection and interpretation. It is also a useful reference for laboratories and as a continuing education resource for physicians. If you are looking for online access to the latest clinical microbiology content, please visit www.wiley.com/learn/clinmicronow.
Accompanying CD-ROM contains ... "a companion eBook version of Molecular diagnostics : for the clinical laboratorian, Second edition ... for downloading and use in the reader's PC or PDA."--Page 4 of cover.
Principles and Applications of Molecular Diagnostics serves as a comprehensive guide for clinical laboratory professionals applying molecular technology to clinical diagnosis. The first half of the book covers principles and analytical concepts in molecular diagnostics such as genomes and variants, nucleic acids isolation and amplification methods, and measurement techniques, circulating tumor cells, and plasma DNA; the second half presents clinical applications of molecular diagnostics in genetic disease, infectious disease, hematopoietic malignancies, solid tumors, prenatal diagnosis, pharmacogenetics, and identity testing. A thorough yet succinct guide to using molecular testing technology, Principles and Applications of Molecular Diagnostics is an essential resource for laboratory professionals, biologists, chemists, pharmaceutical and biotech researchers, and manufacturers of molecular diagnostics kits and instruments. - Explains the principles and tools of molecular biology - Describes standard and state-of-the-art molecular techniques for obtaining qualitative and quantitative results - Provides a detailed description of current molecular applications used to solve diagnostics tasks
Geneticists and molecular biologists have been interested in quantifying genes and their products for many years and for various reasons (Bishop, 1974). Early molecular methods were based on molecular hybridization, and were devised shortly after Marmur and Doty (1961) first showed that denaturation of the double helix could be reversed - that the process of molecular reassociation was exquisitely sequence dependent. Gillespie and Spiegelman (1965) developed a way of using the method to titrate the number of copies of a probe within a target sequence in which the target sequence was fixed to a membrane support prior to hybridization with the probe - typically a RNA. Thus, this was a precursor to many of the methods still in use, and indeed under development, today. Early examples of the application of these methods included the measurement of the copy numbers in gene families such as the ribosomal genes and the immunoglo bulin family. Amplification of genes in tumors and in response to drug treatment was discovered by this method. In the same period, methods were invented for estimating gene num bers based on the kinetics of the reassociation process - the so-called Cot analysis. This method, which exploits the dependence of the rate of reassociation on the concentration of the two strands, revealed the presence of repeated sequences in the DNA of higher eukaryotes (Britten and Kohne, 1968). An adaptation to RNA, Rot analysis (Melli and Bishop, 1969), was used to measure the abundance of RNAs in a mixed population.
This book comprehensively summarizes the biology, etiology, and pathology of ovarian cancer and explores the role of deep molecular and cellular profiling in the advancement of precision medicine. The initial chapter discusses our current understanding of the origin, development, progression and tumorigenesis of ovarian cancer. In turn, the book highlights the development of resistance, disease occurrence, and poor prognosis that are the hallmarks of ovarian cancer. The book then reviews the role of deep molecular and cellular profiling to overcome challenges that are associated with the treatment of ovarian cancer. It explores the use of genome-wide association analysis to identify genetic variants for the evaluation of ovarian carcinoma risk and prognostic prediction. Lastly, it highlights various diagnostic and prognostic ovarian cancer biomarkers for the development of molecular-targeted therapy.