Multiphase Flows with Droplets and Particles, Third Edition

Multiphase Flows with Droplets and Particles, Third Edition

Author: Efstathios E. Michaelides

Publisher: CRC Press

Published: 2022

Total Pages: 0

ISBN-13: 9781003089278

DOWNLOAD EBOOK

Multiphase Flows with Droplets and Particles, Third Edition provides an organized, pedagogical study of multiphase flows with particles and droplets. The revision presents new information on particle interactions; particle collisions; thermophoresis and Brownian movement; computational techniques and codes; the treatment of irregularly-shaped particles. An entire chapter is devoted to the flow of nanoparticles and applications of nanofluids. Features: Discusses the modeling and analysis of nanoparticles. Covers all fundamental aspects of particle and droplet flows. Includes heat and mass transfer processes. Features new and updated sections throughout the text. Includes chapter exercises and a Solutions Manual for adopting instructors. Designed to complement a graduate course in multiphase flows, the book can also serve as a supplement in short courses for engineers or as a stand-alone reference for engineers and scientists who work in this area.


Multiphase Flows with Droplets and Particles, Third Edition

Multiphase Flows with Droplets and Particles, Third Edition

Author: Efstathios E. Michaelides

Publisher: CRC Press

Published: 2022-12-30

Total Pages: 478

ISBN-13: 1000790576

DOWNLOAD EBOOK

Multiphase Flows with Droplets and Particles provides an organized, pedagogical study of multiphase flows with particles and droplets. This revised edition presents new information on particle interactions, particle collisions, thermophoresis and Brownian movement, computational techniques and codes, and the treatment of irregularly shaped particles. An entire chapter is devoted to the flow of nanoparticles and applications of nanofluids. Features Discusses the modelling and analysis of nanoparticles. Covers all fundamental aspects of particle and droplet flows. Includes heat and mass transfer processes. Features new and updated sections throughout the text. Includes chapter exercises and a Solutions Manual for adopting instructors. Designed to complement a graduate course in multiphase flows, the book can also serve as a supplement in short courses for engineers or as a stand-alone reference for engineers and scientists who work in this area.


Multiphase Flows with Droplets and Particles

Multiphase Flows with Droplets and Particles

Author: Clayton T. Crowe

Publisher: CRC Press

Published: 2011-08-26

Total Pages: 509

ISBN-13: 1439840512

DOWNLOAD EBOOK

Since the publication of the first edition of Multiphase Flow with Droplets and Particles, there have been significant advances in science and engineering applications of multiphase fluid flow. Maintaining the pedagogical approach that made the first edition so popular, this second edition provides a background in this important area of fluid mecha


Multiphase Flows with Droplets and Particles, Second Edition

Multiphase Flows with Droplets and Particles, Second Edition

Author: Clayton T. Crowe

Publisher: CRC Press

Published: 2011-08-26

Total Pages: 512

ISBN-13: 1439840504

DOWNLOAD EBOOK

Since the publication of the first edition of Multiphase Flow with Droplets and Particles, there have been significant advances in science and engineering applications of multiphase fluid flow. Maintaining the pedagogical approach that made the first edition so popular, this second edition provides a background in this important area of fluid mechanics to those new to the field and a resource to those actively involved in the design and development of multiphase systems. See what’s new in the Second Edition: Chapter on the latest developments in carrier-phase turbulence Extended chapter on numerical modeling that includes new formulations for turbulence and Reynolds stress models Review of the fundamental equations and the validity of the traditional "two-fluid" approach Expanded exercises and a solutions manual A quick look at the table of contents supplies a snapshot of the breadth and depth of coverage found in this completely revised and updated text. Suitable for a first-year graduate (5th year) course as well as a reference for engineers and scientists, the book is clearly written and provides an essential presentation of key topics in the study of gas-particle and gas-droplet flows.


Stochastic Modelling in Process Technology

Stochastic Modelling in Process Technology

Author: Herold G. Dehling

Publisher: Elsevier

Published: 2007-07-03

Total Pages: 291

ISBN-13: 0080548970

DOWNLOAD EBOOK

There is an ever increasing need for modelling complex processes reliably. Computational modelling techniques, such as CFD and MD may be used as tools to study specific systems, but their emergence has not decreased the need for generic, analytical process models. Multiphase and multicomponent systems, and high-intensity processes displaying a highly complex behaviour are becoming omnipresent in the processing industry. This book discusses an elegant, but little-known technique for formulating process models in process technology: stochastic process modelling. The technique is based on computing the probability distribution for a single particle's position in the process vessel, and/or the particle's properties, as a function of time, rather than - as is traditionally done - basing the model on the formulation and solution of differential conservation equations. Using this technique can greatly simplify the formulation of a model, and even make modelling possible for processes so complex that the traditional method is impracticable. Stochastic modelling has sporadically been used in various branches of process technology under various names and guises. This book gives, as the first, an overview of this work, and shows how these techniques are similar in nature, and make use of the same basic mathematical tools and techniques. The book also demonstrates how stochastic modelling may be implemented by describing example cases, and shows how a stochastic model may be formulated for a case, which cannot be described by formulating and solving differential balance equations. - Introduction to stochastic process modelling as an alternative modelling technique - Shows how stochastic modelling may be succesful where the traditional technique fails - Overview of stochastic modelling in process technology in the research literature - Illustration of the principle by a wide range of practical examples - In-depth and self-contained discussions - Points the way to both mathematical and technological research in a new, rewarding field


Handbook of Atomization and Sprays

Handbook of Atomization and Sprays

Author: Nasser Ashgriz

Publisher: Springer Science & Business Media

Published: 2011-02-18

Total Pages: 922

ISBN-13: 1441972641

DOWNLOAD EBOOK

Atomization and sprays are used in a wide range of industries: mechanical, chemical, aerospace, and civil engineering; material science and metallurgy; food; pharmaceutical, forestry, environmental protection; medicine; agriculture; meteorology and others. Some specific applications are spray combustion in furnaces, gas turbines and rockets, spray drying and cooling, air conditioning, powdered metallurgy, spray painting and coating, inhalation therapy, and many others. The Handbook of Atomization and Sprays will bring together the fundamental and applied material from all fields into one comprehensive source. Subject areas included in the reference are droplets, theoretical models and numerical simulations, phase Doppler particle analysis, applications, devices and more.


Novel Porous Media Formulation for Multiphase Flow Conservation Equations

Novel Porous Media Formulation for Multiphase Flow Conservation Equations

Author: William T. Sha

Publisher: Cambridge University Press

Published: 2011-09-26

Total Pages: 259

ISBN-13: 1139501690

DOWNLOAD EBOOK

William T. Sha first proposed the novel porous media formulation in an article in Nuclear Engineering and Design in 1980. The novel porous media formulation represented a new, flexible and unified approach to solve real-world engineering problems. It uses the concept of volume porosity, directional surface porosities, distributed resistance and distributed heat source and sink. Most practical engineering problems involve many complex shapes and sizes of solid internal structures whose distributed resistance is impossible to quantify accurately. The concept of directional surface porosities eliminates the sole reliance on empirical estimation of the distributed resistance of complex-shaped structures often involved in the analysis. The directional surface porosities thus greatly improve the resolution and modeling accuracy and facilitate mock-ups of numerical simulation models of real engineering systems. Both the continuum and conventional porous media formulations are subsets of the novel porous media formulation.


The dynamics of finite-size settling particles

The dynamics of finite-size settling particles

Author: Doychev, Todor

Publisher: KIT Scientific Publishing

Published: 2015-01-27

Total Pages: 272

ISBN-13: 3731503077

DOWNLOAD EBOOK

This book contributes to the fundamental understanding of the physical mechanisms that take place in pseudo turbulent particulate flows. In the present work we have considered the sedimentation of large numbers of spherical rigid particles in an initially quiescent flow field. We have performed direct numerical simulations employing an immersed boundary method for the representation of the fluid-solid interface. The results evidence that depending on the particle settling regime (i.e. Galileo number and particle-to-fluid density ratio) the particles may exhibit strong inhomogeneous spatial distribution. It is found that the particles are preferentially located in regions with downward fluid motion. The particles inside clusters experience larger settling velocities than the average. The flow in all flow cases is observed to exhibit characteristic features of pseudo-turbulence. The particle-induced flow field is further found to be highly anisotropic with dominant vertical components. The results indicate that, in the present flow configurations, the collective and mobility effects play significant role for the particle and fluid motion.


Multiphase Flow Handbook, Second Edition

Multiphase Flow Handbook, Second Edition

Author: Efstathios Michaelides

Publisher: CRC Press

Published: 2016-10-26

Total Pages: 1559

ISBN-13: 1315354624

DOWNLOAD EBOOK

The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.


Nuclear Reactor Thermal Hydraulics

Nuclear Reactor Thermal Hydraulics

Author: Robert E. Masterson

Publisher: CRC Press

Published: 2019-08-21

Total Pages: 1354

ISBN-13: 1351849522

DOWNLOAD EBOOK

Nuclear Thermal-Hydraulic Systems provides a comprehensive approach to nuclear reactor thermal-hydraulics, reflecting the latest technologies, reactor designs, and safety considerations. The text makes extensive use of color images, internet links, computer graphics, and other innovative techniques to explore nuclear power plant design and operation. Key fluid mechanics, heat transfer, and nuclear engineering concepts are carefully explained, and supported with worked examples, tables, and graphics. Intended for use in one or two semester courses, the text is suitable for both undergraduate and graduate students. A complete Solutions Manual is available for professors adopting the text.