Everything you ever wanted to know about multimedia retrieval and management. This comprehensive book offers a full picture of the cutting-edge technologies necessary for a profound introduction to the field. Leading experts also cover a broad range of practical applications.
Supporting users in their resource discovery mission when hunting for multimedia material is not a technological indexing problem alone. We look at interactiveways of engaging with repositories through browsing and relevance feedback, roping in geographical context, and providing visual summaries for videos. The book concludes with an overview of state-of-the-art research projects in the area of multimedia information retrieval, which gives an indication of the research and development trends and, thereby, a glimpse of the future world.
Multimedia Information Retrieval: Content-Based Information Retrieval from Large Text and Audio Databases addresses the future need for sophisticated search techniques that will be required to find relevant information in large digital data repositories, such as digital libraries and other multimedia databases. Because of the dramatically increasing amount of multimedia data available, there is a growing need for new search techniques that provide not only fewer bits, but also the most relevant bits, to those searching for multimedia digital data. This book serves to bridge the gap between classic ranking of text documents and modern information retrieval where composite multimedia documents are searched for relevant information. Multimedia Information Retrieval: Content-Based Information Retrieval from Large Text and Audio Databases begins to pave the way for speech retrieval; only recently has the search for information in speech recordings become feasible. This book provides the necessary introduction to speech recognition while discussing probabilistic retrieval and text retrieval, key topics in classic information retrieval. The book then discusses speech retrieval, which is even more challenging than retrieving text documents because word boundaries are difficult to detect, and recognition errors affect the retrieval effectiveness. This book also addresses the problem of integrating information retrieval and database functions, since there is an increasing need for retrieving information from frequently changing data collections which are organized and managed by a database system. Multimedia Information Retrieval: Content-Based Information Retrieval from Large Text and Audio Databases serves as an excellent reference source and may be used as a text for advanced courses on the topic.
Based on more than 10 years of teaching experience, Blanken and his coeditors have assembled all the topics that should be covered in advanced undergraduate or graduate courses on multimedia retrieval and multimedia databases. The single chapters of this textbook explain the general architecture of multimedia information retrieval systems and cover various metadata languages such as Dublin Core, RDF, or MPEG. The authors emphasize high-level features and show how these are used in mathematical models to support the retrieval process. For each chapter, there’s detail on further reading, and additional exercises and teaching material is available online.
"This book offers solutions to the challenges of storage and manipulation of a variety of media types providing data placement techniques, scheduling methods, caching techniques and emerging characteristics of multimedia information. Academicians, students, professionals and practitioners in the multimedia industry will benefit from this ground-breaking publication"--Provided by publisher.
Content-based multimedia retrieval is a challenging research field with many unsolved problems. This monograph details concepts and algorithms for robust and efficient information retrieval of two different types of multimedia data: waveform-based music data and human motion data. It first examines several approaches in music information retrieval, in particular general strategies as well as efficient algorithms. The book then introduces a general and unified framework for motion analysis, retrieval, and classification, highlighting the design of suitable features, the notion of similarity used to compare data streams, and data organization.
"Foundations of Large-Scale Multimedia Information Management and Retrieval: Mathematics of Perception" covers knowledge representation and semantic analysis of multimedia data and scalability in signal extraction, data mining, and indexing. The book is divided into two parts: Part I - Knowledge Representation and Semantic Analysis focuses on the key components of mathematics of perception as it applies to data management and retrieval. These include feature selection/reduction, knowledge representation, semantic analysis, distance function formulation for measuring similarity, and multimodal fusion. Part II - Scalability Issues presents indexing and distributed methods for scaling up these components for high-dimensional data and Web-scale datasets. The book presents some real-world applications and remarks on future research and development directions. The book is designed for researchers, graduate students, and practitioners in the fields of Computer Vision, Machine Learning, Large-scale Data Mining, Database, and Multimedia Information Retrieval. Dr. Edward Y. Chang was a professor at the Department of Electrical & Computer Engineering, University of California at Santa Barbara, before he joined Google as a research director in 2006. Dr. Chang received his M.S. degree in Computer Science and Ph.D degree in Electrical Engineering, both from Stanford University.
Multimedia Information Systems brings together in one place important contributions and up-to-date research results in this fast moving area. Multimedia Information Systems serves as an excellent reference, providing insight into some of the most challenging research issues in the field.
Due to increasing globalization and the explosion of media available on the Internet, computer techniques to organize, classify, and find desired media are becoming more and more relevant. One such technique to extract semantic information from multimedia data sources is Multimedia Information Retrieval (MMIR or MIR). MIR is a broad area covering both structural issues and intelligent content analysis and retrieval. These aspects must be integrated into a seamless whole, which involves expertise from a wide variety of fields. This book presents recent applications of MIR for content-based image retrieval, bioinformation analysis and processing, forensic multimedia retrieval techniques, and audio and music classification.
As consumer costs for multimedia devices such as digital cameras and Web phones have decreased and diversity in the market has skyrocketed, the amount of digital information has grown considerably. Intelligent Multimedia Databases and Information Retrieval: Advancing Applications and Technologies details the latest information retrieval technologies and applications, the research surrounding the field, and the methodologies and design related to multimedia databases. Together with academic researchers and developers from both information retrieval and artificial intelligence fields, this book details issues and semantics of data retrieval with contributions from around the globe. As the information and data from multimedia databases continues to expand, the research and documentation surrounding it should keep pace as best as possible, and this book provides an excellent resource for the latest developments.