Multilevel Optimization in Infinity Norm and Associated Stopping Criteria

Multilevel Optimization in Infinity Norm and Associated Stopping Criteria

Author: Mélodie Mouffe

Publisher:

Published: 2009

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

This thesis concerns the study of a multilevel trust-region algorithm in infinity norm, designed for the solution of nonlinear optimization problems of high size, possibly submitted to bound constraints. The study looks at both theoretical and numerical sides. The multilevel algorithm RMTR8 that we study has been developed on the basis of the algorithm created by Gratton, Sartenaer and Toint (2008b), which was modified first by replacing the use of the Euclidean norm by the infinity norm and also by adapting it to solve bound-constrained problems. In a first part, the main features of the new algorithm are exposed and discussed. The algorithm is then proved globally convergent in the sense of Conn, Gould and Toint (2000), which means that it converges to a local minimum when starting from any feasible point. Moreover, it is shown that the active constraints identification property of the trust-region methods based on the use of a Cauchy step can be extended to any internal solver that satisfies a sufficient decrease property. As a consequence, this identification property also holds for a specific variant of our new algorithm. Later, we study several stopping criteria for nonlinear bound-constrained algorithms, in order to determine their meaning and their advantages from specific points of view, and such that we can choose easily the one that suits best specific situations. In particular, the stopping criteria are examined in terms of backward error analysis, which has to be understood both in the usual meaning (using a product norm) and in a multicriteria optimization framework. In the end, a practical algorithm is set on, that uses a Gauss-Seidel-like smoothing technique as an internal solver. Numerical tests are run on a FORTRAN 95 version of the algorithm in order to define a set of efficient default parameters for our method, as well as to compare the algorithm with other classical algorithms like the mesh refinement technique and the conjugate gradient method, on both unconstrained and bound-constrained problems. These comparisons seem to give the advantage to the designed multilevel algorithm, particularly on nearly quadratic problems, which is the behavior expected from an algorithm inspired by multigrid techniques. In conclusion, the multilevel trust-region algorithm presented in this thesis is an improvement of the previous algorithm of this kind because of the use of the infinity norm as well as because of its handling of bound constraints. Its convergence, its behavior concerning the bounds and the definition of its stopping criteria are studied. Moreover, it shows a promising numerical behavior.


Acta Numerica 2005: Volume 14

Acta Numerica 2005: Volume 14

Author: Arieh Iserles

Publisher: Cambridge University Press

Published: 2005-06-30

Total Pages: 584

ISBN-13: 9780521858076

DOWNLOAD EBOOK

A high-impact factor, prestigious annual publication containing invited surveys by subject leaders: essential reading for all practitioners and researchers.


Engineering Design Optimization

Engineering Design Optimization

Author: Joaquim R. R. A. Martins

Publisher: Cambridge University Press

Published: 2021-11-18

Total Pages: 653

ISBN-13: 110898861X

DOWNLOAD EBOOK

Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.


Iterative Solution Methods

Iterative Solution Methods

Author: Owe Axelsson

Publisher: Cambridge University Press

Published: 1996-03-29

Total Pages: 676

ISBN-13: 9780521555692

DOWNLOAD EBOOK

This book deals primarily with the numerical solution of linear systems of equations by iterative methods. The first part of the book is intended to serve as a textbook for a numerical linear algebra course. The material assumes the reader has a basic knowledge of linear algebra, such as set theory and matrix algebra, however it is demanding for students who are not afraid of theory. To assist the reader, the more difficult passages have been marked, the definitions for each chapter are collected at the beginning of the chapter, and numerous exercises are included throughout the text. The second part of the book serves as a monograph introducing recent results in the iterative solution of linear systems, mainly using preconditioned conjugate gradient methods. This book should be a valuable resource for students and researchers alike wishing to learn more about iterative methods.


A Multigrid Tutorial

A Multigrid Tutorial

Author: William L. Briggs

Publisher: SIAM

Published: 2000-07-01

Total Pages: 318

ISBN-13: 9780898714623

DOWNLOAD EBOOK

Mathematics of Computing -- Numerical Analysis.


Nonlinear Assignment Problems

Nonlinear Assignment Problems

Author: Panos M. Pardalos

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 317

ISBN-13: 1475731558

DOWNLOAD EBOOK

Nonlinear Assignment Problems (NAPs) are natural extensions of the classic Linear Assignment Problem, and despite the efforts of many researchers over the past three decades, they still remain some of the hardest combinatorial optimization problems to solve exactly. The purpose of this book is to provide in a single volume, major algorithmic aspects and applications of NAPs as contributed by leading international experts. The chapters included in this book are concerned with major applications and the latest algorithmic solution approaches for NAPs. Approximation algorithms, polyhedral methods, semidefinite programming approaches and heuristic procedures for NAPs are included, while applications of this problem class in the areas of multiple-target tracking in the context of military surveillance systems, of experimental high energy physics, and of parallel processing are presented. Audience: Researchers and graduate students in the areas of combinatorial optimization, mathematical programming, operations research, physics, and computer science.


Iterative Methods for Optimization

Iterative Methods for Optimization

Author: C. T. Kelley

Publisher: SIAM

Published: 1999-01-01

Total Pages: 195

ISBN-13: 9781611970920

DOWNLOAD EBOOK

This book presents a carefully selected group of methods for unconstrained and bound constrained optimization problems and analyzes them in depth both theoretically and algorithmically. It focuses on clarity in algorithmic description and analysis rather than generality, and while it provides pointers to the literature for the most general theoretical results and robust software, the author thinks it is more important that readers have a complete understanding of special cases that convey essential ideas. A companion to Kelley's book, Iterative Methods for Linear and Nonlinear Equations (SIAM, 1995), this book contains many exercises and examples and can be used as a text, a tutorial for self-study, or a reference. Iterative Methods for Optimization does more than cover traditional gradient-based optimization: it is the first book to treat sampling methods, including the Hooke-Jeeves, implicit filtering, MDS, and Nelder-Mead schemes in a unified way, and also the first book to make connections between sampling methods and the traditional gradient-methods. Each of the main algorithms in the text is described in pseudocode, and a collection of MATLAB codes is available. Thus, readers can experiment with the algorithms in an easy way as well as implement them in other languages.


Stochastic Adaptive Search for Global Optimization

Stochastic Adaptive Search for Global Optimization

Author: Z.B. Zabinsky

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 236

ISBN-13: 1441991824

DOWNLOAD EBOOK

The field of global optimization has been developing at a rapid pace. There is a journal devoted to the topic, as well as many publications and notable books discussing various aspects of global optimization. This book is intended to complement these other publications with a focus on stochastic methods for global optimization. Stochastic methods, such as simulated annealing and genetic algo rithms, are gaining in popularity among practitioners and engineers be they are relatively easy to program on a computer and may be cause applied to a broad class of global optimization problems. However, the theoretical performance of these stochastic methods is not well under stood. In this book, an attempt is made to describe the theoretical prop erties of several stochastic adaptive search methods. Such a theoretical understanding may allow us to better predict algorithm performance and ultimately design new and improved algorithms. This book consolidates a collection of papers on the analysis and de velopment of stochastic adaptive search. The first chapter introduces random search algorithms. Chapters 2-5 describe the theoretical anal ysis of a progression of algorithms. A main result is that the expected number of iterations for pure adaptive search is linear in dimension for a class of Lipschitz global optimization problems. Chapter 6 discusses algorithms, based on the Hit-and-Run sampling method, that have been developed to approximate the ideal performance of pure random search. The final chapter discusses several applications in engineering that use stochastic adaptive search methods.