Neuroendocrinology underpins fundamental physiological, molecular, biological, and genetic principles such as the regulation of gene transcription and translation. This handbook highlights the experimental and technical foundations of each area's major concepts and principles.
Molecular Neuroendocrinology: From Genome to Physiology, provides researchers and students with a critical examination of the steps being taken to decipher genome complexity in the context of the expression, regulation and physiological functions of genes in neuroendocrine systems. The 19 chapters are divided into four sectors: A) describes and explores the genome, its evolution, expression and the mechanisms that contribute to protein, and hence biological, diversity. B) discusses the mechanisms that enhance peptide and protein diversity beyond what is encoded in the genome through post-translational modification. C) considers the molecular tools that today’s neuroendocrinologists can use to study the regulation and function of neuroendocrine genes within the context of the intact organism. D) presents a range of case studies that exemplify the state-of-the-art application of genomic technologies in physiological and behavioural experiments that seek to better understand complex biological processes. • Written by a team of internationally renowned researchers • Both print and enhanced e-book versions are available • Illustrated in full colour throughout This is the third volume in a new Series ‘Masterclass in Neuroendocrinology’ , a co- publication between Wiley and the INF (International Neuroendocrine Federation) that aims to illustrate highest standards and encourage the use of the latest technologies in basic and clinical research and hopes to provide inspiration for further exploration into the exciting field of neuroendocrinology. Series Editors: John A. Russell, University of Edinburgh, UK and William E. Armstrong, The University of Tennessee, USA
This book is designed as an introductory text in neuroendocrinology; the study of the interaction between the brain and endocrine system and the influence of this on behaviour. The endocrine glands, pituitary gland and hypothalamus and their interactions and hormones are discussed. The action of steroid and thyroid hormone receptors and the regulation of target cell response to hormones is examined. The function of neuropeptides is discussed with respect to the neuroendocrine system and behaviour. The neuroimmune system and lymphokines are described and the interaction between the neuroendocrine and neuroimmune systems discussed. Finally, methods for studying hormonal influences on behaviour are outlined. Each chapter has review and essay questions designed for advanced students and honours or graduate students with a background in neuroscience, respectively.
Traditionally, endocrinology textbooks have been either short notes or multi-author, multi-volume monster, all of which present clinical material last and often only briefly. Endocrinology is different and used real cases to lead readers into the text and then describes the biochemistry, physiology, and anatomy they need to understand the case. The
The publication of the extensive seven-volume work Comprehensive Molecular Insect Science provided a complete reference encompassing important developments and achievements in modern insect science. One of the most swiftly moving areas in entomological and comparative research is endocrinology, and this volume, Insect Endocrinology, is designed for those who desire a comprehensive yet concise work on important aspects of this topic. Because this area has moved quickly since the original publication, articles in this new volume are revised, highlighting developments in the related area since its original publication. Insect Endocrinology covers the mechanism of action of insect hormones during growth and metamorphosis as well as the role of insect hormones in reproduction, diapause and the regulation of metabolism. Contents include articles on the juvenile hormones, circadian organization of the endocrine system, ecdysteroid chemistry and biochemistry, as well as new chapters on insulin-like peptides and the peptide hormone Bursicon. This volume will be of great value to senior investigators, graduate students, post-doctoral fellows and advanced undergraduate research students. It can also be used as a reference for graduate courses and seminars on the topic. Chapters will also be valuable to the applied biologist or entomologist, providing the requisite understanding necessary for probing the more applied research areas. - Articles selected by the known and respected editor-in-chief of the original major reference work, Comprehensive Molecular Insect Science - Newly revised contributions bring together the latest research in the quickly moving field of insect endocrinology - Review of the literature of the past five years is now included, as well as full use of data arising from the application of molecular technologies wherever appropriate
A panel of leading experts integrate the latest findings from basic and clinical science to create a comprehensive treatment of the processes by which the brain acts as an endocrine organ, not only to control hormonal functions, but also to maintain homeostasis and regulate behavior. The authors-recognized both as leaders in their fields and as skilled teachers-provide systematic coverage of the analytical, anatomical, functional, clinical, and pathological aspects of neuroendocrinology. Topics range from the interactions between the nervous and endocrine systems to the regulation of reproduction, development, metabolism, fluid balance, and biological rhythms. Neuroendocrinology in Physiology and Medicine offers an unprecedented marriage of clinical and basic knowledge that has been missing from classical neuroscience, endocrinology, and physiology texts. It will teach today's medical students and serve researchers as a valuable reference to this rapidly growing field.
In this book, experts in the field provide comprehensive descriptions of the neuroanatomy of the hypothalamic neuroendocrine systems. The book begins with an extensive discussion on the structural components of the neuroendocrine systems. The reader will be introduced to the anatomy and biology of the hypothalamus and the pituitary. The human hypothalamus is presented in particular detail using state-of-the-art imaging techniques. In the next section, the neuroanatomy of traditional hypothalamo-hypophyseal systems is highlighted, with chapters describing magnocellular neuroendocrine cells and discussing the respective types of hypothalamic neurons that regulate various pituitary hormones. Following this detailed structural and anatomical description of the neuroendocrine system, the book’s final section focuses on the hypothalamic control of neuroendocrine functions. This includes the control of circadian rhythm, metabolism and appetite via specific peptidergic circuits. This book provides essential information on the neuroanatomy and control of neuroendocrine systems, addresses cutting-edge research questions posed by recent advances in the development of potent neuroanatomical tools, and highlights the latest technologies used in neuroendocrinology research, making it a valuable reference guide for students, trainees and established researchers alike. This is the twelfth volume in the International Neuroendocrine Federation (INF) Masterclass in Neuroendocrinology series, which aims to illustrate the highest standards and to encourage the use of the latest technologies in basic and clinical research and hopes to provide inspiration for further exploration into the exciting field of neuroendocrinology. Chapter 12 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com
This book is dedicated to present different aspects of reproductive physiology and molecular endocrinology of commercially important as well as potential aquaculture fish species. The existing aquaculture generation is looking for species diversification for efficient utilization of available diverse water resources. The knowledge of reproductive physiology of fish will help in development of breeding strategy for use in commercial aquaculture. Reproductive system is highly coordinated and governed by means of complex network of nervous, endocrine system and environmental factor as well. This book emphasize on different key aspects of reproductive endocrine system such as basic gonadal biology in the events of climate vulnerability, sex determination, sex reversal, stimulatory hormones, inhibitory hormones and receptors, environmental and chemical factor guiding reproduction, puberty, neuroendocrine regulation of reproduction etc. This book further describes how reproduction is not just indispensable for the existence or survival of an individual, but it is important for the survival of species. Chapters also address the concerns of anthropogenic activities on fish and the aquatic environment lead main trouble on physiological and reproductive processes of aquatic animals. This book offers an attractive compilation of highly relevant aspects of current and future of aquaculture, especially in view of the growing awareness of aquaculture, to food scientists working on commercial fish, animal biologists, fish geneticists etc. This book is very timely, and relevant to the sustainable development goals. The contents would be relevant to policy makers, working towards blue revolution and blue economy.