Modeling and Analysis of Passive Vibration Isolation Systems

Modeling and Analysis of Passive Vibration Isolation Systems

Author: Sudhir Kaul

Publisher: Elsevier

Published: 2021-08-31

Total Pages: 235

ISBN-13: 0128194219

DOWNLOAD EBOOK

Modeling and Analysis of Passive Vibration Isolation Systems discusses a wide range of dynamic models that can be used for the design and analysis of passive vibration isolation systems. These models range from linear viscoelastic single degree-of-freedom systems to multiple degree-of-freedom nonlinear systems. They can be used to evaluate hyperelasticity and creep, and to represent the inertia effect for an evaluation of vibroacoustic characteristics at high frequencies. This book also highlights specific nonlinear behavior, displacement-limiting designs, hyperelastic behavior, and characteristics associated with elastomeric materials for each model. It also identifies key attributes, limitations, and constraints, providing a holistic reference that can be used for the design and analysis of passive vibration isolators. Modeling and Analysis of Passive Vibration Isolation Systems serves as a reference for engineers and researchers involved in the design, development, modeling, analysis, and testing of passive vibration isolation systems and as a reference for a graduate course in vibration modeling and analysis. - Outlines the use of multiple models for optimal passive vibration isolation system design - Discusses the effects system design has on subsequent product development components and parameters - Includes applied examples from the automotive, aerospace, civil engineering and machine tool industries - Presents models that can be extended or modified to investigate different means of passive isolation, nonlinearities, and specific design configurations - Considers specific elastomer characteristics such as Mullins and Payne effects for theoretical modeling and analysis


Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems

Author: Ramin S. Esfandiari

Publisher: CRC Press

Published: 2018-01-29

Total Pages: 595

ISBN-13: 1351751654

DOWNLOAD EBOOK

Modeling and Analysis of Dynamic Systems, Third Edition introduces MATLAB®, Simulink®, and SimscapeTM and then utilizes them to perform symbolic, graphical, numerical, and simulation tasks. Written for senior level courses/modules, the textbook meticulously covers techniques for modeling a variety of engineering systems, methods of response analysis, and introductions to mechanical vibration, and to basic control systems. These features combine to provide students with a thorough knowledge of the mathematical modeling and analysis of dynamic systems. The Third Edition now includes Case Studies, expanded coverage of system identification, and updates to the computational tools included.


Modeling and Analysis of Dynamic Systems, Second Edition

Modeling and Analysis of Dynamic Systems, Second Edition

Author: Ramin S. Esfandiari

Publisher: CRC Press

Published: 2014-04-24

Total Pages: 570

ISBN-13: 1466574933

DOWNLOAD EBOOK

Modeling and Analysis of Dynamic Systems, Second Edition introduces MATLAB®, Simulink®, and SimscapeTM and then uses them throughout the text to perform symbolic, graphical, numerical, and simulation tasks. Written for junior or senior level courses, the textbook meticulously covers techniques for modeling dynamic systems, methods of response analysis, and provides an introduction to vibration and control systems. These features combine to provide students with a thorough knowledge of the mathematical modeling and analysis of dynamic systems. See What’s New in the Second Edition: Coverage of modeling and analysis of dynamic systems ranging from mechanical to thermal using Simscape Utilization of Simulink for linearization as well as simulation of nonlinear dynamic systems Integration of Simscape into Simulink for control system analysis and design Each topic covered includes at least one example, giving students better comprehension of the subject matter. More complex topics are accompanied by multiple, painstakingly worked-out examples. Each section of each chapter is followed by several exercises so that students can immediately apply the ideas just learned. End-of-chapter review exercises help in learning how a combination of different ideas can be used to analyze a problem. This second edition of a bestselling textbook fully integrates the MATLAB Simscape Toolbox and covers the usage of Simulink for new purposes. It gives students better insight into the involvement of actual physical components rather than their mathematical representations.


Passive Vibration Isolation

Passive Vibration Isolation

Author: Eugene I. Rivin

Publisher: Professional Engineering Publishing

Published: 2003

Total Pages: 0

ISBN-13: 9781860584008

DOWNLOAD EBOOK

"This book provides a comprehensive treatment of the principles of design and means for realization of passive vibration isolation systems for real life objects. A special emphasis is given to effective techniques and methods that are not yet widely used in the practice of vibration isolation in industry." "The book is written with practitioners in mind and many of the problems addressed and the solutions presented are relevant not only to the isolation of stationary sensitive equipment (the main thrust of the book), but also to civil engineering and transport applications."--BOOK JACKET.


Constitutive Models for Rubber X

Constitutive Models for Rubber X

Author: Alexander Lion

Publisher: CRC Press

Published: 2017-08-15

Total Pages: 957

ISBN-13: 1351840398

DOWNLOAD EBOOK

In order to develop innovative products, to reduce development costs and the number of prototypes and to accelerate development processes, numerical simulations become more and more attractive. As such, numerical simulations are instrumental in understanding complicated material properties like chemical ageing, crack propagation or the strain- and temperature-induced crystallisation of rubber. Therefore, experimentally validated and physically meaningful constitutive models are indispensable. Elastomers are used for products like tyres, engine and suspension mounts or seals, to name a few. The interest in modelling the quasi-static stress-strain behaviour was dominant in the past decades, but nowadays the interests also include influences of environmental conditions. The latest developments on the material behaviour of elastomers are collected in the present volume. Constitutive Models for Rubber X is a comprehensive compilation of nearly all oral and poster contributions to the European Conference on Constitutive Models for Rubber (Munich, 28-31 August 2017). The 95 highly topical contributions reflect the state of-the-art in material modelling and testing of elastomers. They cover the fields of material testing and processing, filler reinforcement, electromagnetic sensitive elastomers, dynamic properties, constitutive modelling, micromechanics, finite element implementation, stress softening, chemical ageing, fatigue and durability. In the area of rubbery materials and structures, applied research will play an important role also in the coming decades. Constitutive Models for Rubber X is of interest to developers and researchers involved in the rubber processing and CAE software industries, as well as for academics in nearly all disciplines of engineering and material sciences.


Energy Flow Theory of Nonlinear Dynamical Systems with Applications

Energy Flow Theory of Nonlinear Dynamical Systems with Applications

Author: Jing Tang Xing

Publisher: Springer

Published: 2015-05-28

Total Pages: 307

ISBN-13: 3319177419

DOWNLOAD EBOOK

This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as an undergraduate or graduate textbook or a comprehensive source for scientists, researchers and engineers, providing the statement of the art on energy flow or power flow theory and methods.


Structure Vibration: Vibration Mitigation Materials and Structures

Structure Vibration: Vibration Mitigation Materials and Structures

Author: Zhao-Dong Xu

Publisher: Frontiers Media SA

Published: 2019-12-04

Total Pages: 149

ISBN-13: 2889632121

DOWNLOAD EBOOK

Vibration is a common phenomenon when a structure is exposed to one or multiple mechanical or environmental actions, always at great cost to lives and to the economy. In order to reduce the adverse impact of vibration, vibration mitigation materials and structures have recently been at the center of attention. This book “Structure Vibration: Vibration Mitigation Materials and Structures” as the tip of the iceberg, provides a window to let people know about the flourishing of this young field. Twelve original research papers and one review paper have been included in this book to represent the recent development of vibration mitigation technology. The vibration mitigation material manufacture process, testing, analysis, and application have completely thoroughly studied. We wish more cutting-edge achievements will arise to benefit mankind and continually promote the development of vibration mitigation materials and structures.


Model Validation and Uncertainty Quantification, Volume 3

Model Validation and Uncertainty Quantification, Volume 3

Author: Robert Barthorpe

Publisher: Springer

Published: 2019-05-30

Total Pages: 288

ISBN-13: 3030120759

DOWNLOAD EBOOK

Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics, 2019, the third volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Inverse Problems and Uncertainty Quantification Controlling Uncertainty Validation of Models for Operating Environments Model Validation & Uncertainty Quantification: Decision Making Uncertainty Quantification in Structural Dynamics Uncertainty in Early Stage Design Computational and Uncertainty Quantification Tools