Minimax and Monotonicity

Minimax and Monotonicity

Author: Stephen Simons

Publisher: Springer

Published: 2006-11-14

Total Pages: 173

ISBN-13: 3540689311

DOWNLOAD EBOOK

Focussing on the theory (both classical and recent) of monotone multifunctions on a (possibly nonreflexive) Banach space, this book looks at the big convexification of a multifunction; convex functions associated with a multifunction; minimax theorems as a tool in functional analysis and convex analysis. It includes new results on the existence of continuous linear functionals; the conjugates, biconjugates and subdifferentials of convex lower semicontinuous functions, Fenchel duality; (possibly unbounded) positive linear operators from a Banach space into its dual; the sum of maximal monotone operators, and a list of open problems. The reader is expected to know basic functional analysis and calculus of variations, including the Bahn-Banach theorem, Banach-Alaoglu theorem, Ekeland's variational principle.


Generalized Convexity and Generalized Monotonicity

Generalized Convexity and Generalized Monotonicity

Author: Nicolas Hadjisavvas

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 422

ISBN-13: 3642566456

DOWNLOAD EBOOK

Various generalizations of convex functions have been introduced in areas such as mathematical programming, economics, management science, engineering, stochastics and applied sciences, for example. Such functions preserve one or more properties of convex functions and give rise to models which are more adaptable to real-world situations than convex models. Similarly, generalizations of monotone maps have been studied recently. A growing literature of this interdisciplinary field has appeared, and a large number of international meetings are entirely devoted or include clusters on generalized convexity and generalized monotonicity. The present book contains a selection of refereed papers presented at the 6th International Symposium on Generalized Convexity/Monotonicity, and aims to review the latest developments in the field.


From Hahn-Banach to Monotonicity

From Hahn-Banach to Monotonicity

Author: Stephen Simons

Publisher: Springer Science & Business Media

Published: 2008-02-13

Total Pages: 251

ISBN-13: 1402069189

DOWNLOAD EBOOK

This new edition of LNM 1693 aims to reduce questions on monotone multifunctions to questions on convex functions. However, rather than using a "big convexification" of the graph of the multifunction and the "minimax technique" for proving the existence of linear functionals satisfying certain conditions, the Fitzpatrick function is used. The journey begins with the Hahn-Banach theorem and culminates in a survey of current results on monotone multifunctions on a Banach space.


Convex Analysis and Monotone Operator Theory in Hilbert Spaces

Convex Analysis and Monotone Operator Theory in Hilbert Spaces

Author: Heinz H. Bauschke

Publisher: Springer

Published: 2017-02-28

Total Pages: 624

ISBN-13: 3319483110

DOWNLOAD EBOOK

This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.


Algorithmic Decision Theory

Algorithmic Decision Theory

Author: RONEN BRAFMAN

Publisher: Springer Science & Business Media

Published: 2011-10-07

Total Pages: 355

ISBN-13: 3642248721

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Second International Conference on Algorithmic Decision Theory, ADT 2011, held in Piscataway, NJ, USA, in October 2011. The 24 revised full papers presented were carefully reviewed and selected from 50 submissions.


Minimax Theory and Applications

Minimax Theory and Applications

Author: Biagio Ricceri

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 278

ISBN-13: 940159113X

DOWNLOAD EBOOK

The present volume contains the proceedings of the workshop on "Minimax Theory and Applications" that was held during the week 30 September - 6 October 1996 at the "G. Stampacchia" International School of Mathematics of the "E. Majorana" Centre for Scientific Cul ture in Erice (Italy) . The main theme of the workshop was minimax theory in its most classical meaning. That is to say, given a real-valued function f on a product space X x Y , one tries to find conditions that ensure the validity of the equality sup inf f(x,y) = inf sup f(x, y). yEY xEX xEX yEY This is not an appropriate place to enter into the technical details of the proofs of minimax theorems, or into the history of the contribu tions to the solution of this basic problem in the last 7 decades. But we do want to stress its intrinsic interest and point out that, in spite of its extremely simple formulation, it conceals a great wealth of ideas. This is clearly shown by the large variety of methods and tools that have been used to study it. The applications of minimax theory are also extremely interesting. In fact, the need for the ability to "switch quantifiers" arises in a seemingly boundless range of different situations. So, the good quality of a minimax theorem can also be judged by its applicability. We hope that this volume will offer a rather complete account of the state of the art of the subject.


Encyclopedia of Optimization

Encyclopedia of Optimization

Author: Christodoulos A. Floudas

Publisher: Springer Science & Business Media

Published: 2008-09-04

Total Pages: 4646

ISBN-13: 0387747583

DOWNLOAD EBOOK

The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".


Calculus of Variations and Differential Equations

Calculus of Variations and Differential Equations

Author: Alexander Ioffe

Publisher: CRC Press

Published: 1999-07-15

Total Pages: 276

ISBN-13: 9780849306051

DOWNLOAD EBOOK

The calculus of variations is a classical area of mathematical analysis-300 years old-yet its myriad applications in science and technology continue to hold great interest and keep it an active area of research. These two volumes contain the refereed proceedings of the international conference on Calculus of Variations and Related Topics held at the Technion-Israel Institute of Technology in March 1998. The conference commemorated 300 years of work in the field and brought together many of its leading experts. The papers in the first volume focus on critical point theory and differential equations. The other volume deals with variational aspects of optimal control. Together they provide a unique opportunity to review the state-of-the-art of the calculus of variations, as presented by an international panel of masters in the field.


Optimization of Complex Systems: Theory, Models, Algorithms and Applications

Optimization of Complex Systems: Theory, Models, Algorithms and Applications

Author: Hoai An Le Thi

Publisher: Springer

Published: 2019-06-15

Total Pages: 1164

ISBN-13: 3030218031

DOWNLOAD EBOOK

This book contains 112 papers selected from about 250 submissions to the 6th World Congress on Global Optimization (WCGO 2019) which takes place on July 8–10, 2019 at University of Lorraine, Metz, France. The book covers both theoretical and algorithmic aspects of Nonconvex Optimization, as well as its applications to modeling and solving decision problems in various domains. It is composed of 10 parts, each of them deals with either the theory and/or methods in a branch of optimization such as Continuous optimization, DC Programming and DCA, Discrete optimization & Network optimization, Multiobjective programming, Optimization under uncertainty, or models and optimization methods in a specific application area including Data science, Economics & Finance, Energy & Water management, Engineering systems, Transportation, Logistics, Resource allocation & Production management. The researchers and practitioners working in Nonconvex Optimization and several application areas can find here many inspiring ideas and useful tools & techniques for their works.


Infinite Products of Operators and Their Applications

Infinite Products of Operators and Their Applications

Author: Simeon Reich

Publisher: American Mathematical Soc.

Published: 2015-03-30

Total Pages: 282

ISBN-13: 1470414805

DOWNLOAD EBOOK

This volume contains the proceedings of the workshop on Infinite Products of Operators and Their Applications, held from May 21-24, 2012, at the Technion-Israel Institute of Technology, Haifa, Israel. The papers cover many different topics regarding infinite products of operators and their applications: projection methods for solving feasibility and best approximation problems, arbitrarily slow convergence of sequences of linear operators, monotone operators, proximal point algorithms for finding zeros of maximal monotone operators in the presence of computational errors, the Pascoletti-Serafini problem, remetrization for infinite families of mappings, Poisson's equation for mean ergodic operators, vector-valued metrics in fixed point theory, contractivity of infinite products and mean convergence theorems for generalized nonspreading mappings. This book is co-published with Bar-Ilan University (Ramat-Gan, Israel).